www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

A Systematic Review on "Self- Micro Emulsifying Drug Delivery Systems (SMEDDS) for Herbal and Plant-Based Drugs: Enhancing Solubility and Bioavailability"

VishawasR.Potphode¹, Dr. Shweta G. Tapadiya²

2Government Collegeof Pharmacy, Aurangabad (Chh.Sambhajinagar), Opp. Govt. Polytechnic, Osmanpura, Aurangabad (Chh.Sambhajinagar), Maharashtra, 431005.

2(Assistant Professor) Pharmacognosy Department Government Collegeof Pharmacy, Aurangabad (Chh.Sambhajinagar), Opp. Govt. Polytechnic, Osmanpura, Aurangabad (Chh.Sambhajinagar), Maharashtra,431005.

Corresponding Author:-

VishawasR.Potphode¹

Government College of Pharmacy, Aurangabad(Chh.Sambhajinagar), Opp. Govt. Polytechnic, Osmanpura, Aurangabad(Chh.Sambhajinagar), Maharashtra, 431005.

(Received: 16 May 2025 Revised: 20 June 2025 Accepted: 02 July 2025)

KEYWORDS

Poorly water-soluble drugs, Biopharmaceutical classification system (BCS), Self-micro-emulsifying drug delivery system (SMEDDS), Solid Self-micro-emulsifying drug delivery system (S-SMEDDS), Liquid micro-emulsifying drug delivery system (L-SMEDDS).

ABSTRACT:

The rise of modern drug discovery has led to the identification of numerous lipophilic drug candidates with poor water solubility, posing challenges in achieving optimal oral bioavailability. Micro- and nano-based drug delivery systems, particularly Self-Emulsifying Drug Delivery Systems (SMEDDS), have emerged as effective solutions to enhance solubility and absorption. This brief review highlights key concepts of SMEDDS and their application in herbal and plant-based drug formulations. It outlines formulation strategies, compares phytopharmaceuticals with synthetic drugs in SMEDDS platforms, and discusses challenges such as variability, poor stability, and regulatory issues in the development of herbal drugs. Literature reports demonstrate improved solubility and bioavailability of herbal actives using SMEDDS. The paper also summarises current research, marketed formulations, and future directions aimed at overcoming limitations and optimising the delivery of both herbal and synthetic drugs using SMEDDS.

INTRODUCTION

Herbal medication products have been utilized for centuries as a primary form of healthcare in many cultures worldwide. Derived from plants and plant-derived materials, these products offer a rich source of bioactive compounds with potential therapeutic benefits. The use of herbal medicines spans diverse traditional systems, such as traditional Chinese medicine (TCM), Ayurveda, and indigenous healing practices.[1] In recent

years a substantial fraction of phytoconstituents is reported to have poor aqueous solubility that often leads to the challenges like low oral bioavailability, high intra and inter subject variability and lack of dose proportion Advances in In- vitro screening methods like combinatorial chemistry are leading to the emergence of many potential chemical components with marked therapeutic activity. [2][3]In recent years, the formulation of poorly water-soluble compounds

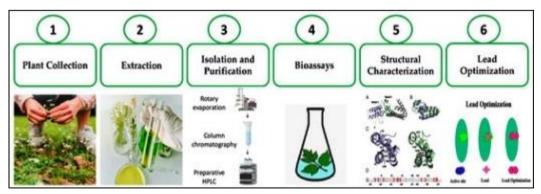
www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

presents interesting challenges for formulation scientists in the pharmaceutical industry.[4][5] According to the World Health Organisation, 80% of people in developing countries depend on traditional medicinal practices to meet and/or supplement their basic health needs. Although the advancement of a new approach to drug discovery has led to many compounds in clinical development being upregulated, nearly 42% of compounds accepted in the market and approximately 92% of compounds under discovery are less water-soluble, have inadequate intestinal absorption, and will suffer from low oral bioavailability.[6] In this review, we briefly describe the basic concept of self-emulsifying drug delivery systems, mainly the application of SEDDS in plant and herbal drugs and Literature updates on various reports of Solubility /Bioavailability enhancement using herbal drugs self-emulsifying delivery system formulations.

Fundamentals of Self-Emulsifying Drug Delivery Systems (SEDDS) [7] Mechanism of Action:

Explanation of how SEDDS form oil-in-water emulsions when exposed to aqueous environments (e.g. gastrointestinal fluids) Self Self-emulsifying processes are related to the free energy, 5894. According to Reiss 95 (1975),[8] the theory of Formation of microemulsion shows that


emulsification occurs when the entropy change that favours dispersion is greater than the energy required to increase the surface area of the dispersion, and the free energy (ΔG) is negative. The free energy in the micro-emulsion formation is directly proportional to the energy required to create a new surface between the two phases and can be described by the equation [9][10]

$$\Delta G = \sum N \pi r^2 \sigma \dots (1)[11]$$

Where, ΔG is the free energy associated with the process, N is the number of droplets of radius r, and σ represents the interfacial energy after a certain time, the two phases of the emulsion tend to separate to reduce the interfacial area, and subsequently, the free energy of the system decreases. To stabilise emulsions, emulsifying agents are added which reduces the interfacial energy, as well as provide a barrier to prevent coalescence. [12]

Methods for Discovery[13]

Discovering and creating therapeutics from natural substances found in plants is an intricate and diverse journey that encompasses several essential stages, each of which has a vital part in transforming the potential of botanical chemicals into successful medications. Below is a thorough analysis of these fundamental techniques for exploration (Fig. 1)

Figure 1. Various stages of the drug discovery process from natural products (1-Plant collection, 2-Extraction, 3-Isolation and purification, 4-Bioassays, 5-Structural characterization, 6-Lead Optimization).[14]

www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

Formulation Strategies for Herbal and Plant-Based Drugs Using SEDDS [15]

Formulating Self-Emulsifying Drug Delivery Systems (SEDDS) for herbal and plant-based drugs requires careful selection of components and optimisation of the formulation to enhance the solubility, bioavailability, and therapeutic efficacy of the active ingredients. These drugs often have poor solubility, low absorption rates, and variable bioavailability when taken orally. SEDDS can overcome these challenges by solubilising hydrophobic compounds, promoting absorption, and providing targeted delivery.

- 1. **Selection of Lipid Components**: Use of oils, triglycerides, and phospholipids for various herbal drug formulations.
- 2. Surfactant and Co-Surfactant Selection: The choice of surfactants (e.g., polysorbates, lecithins) to optimise emulsification and stability.

Optimisation Techniques:

- I. **Pseudo-Ternary Phase Diagrams**: To determine the optimal ratio of lipid, surfactant, and co-surfactant.
- II. Characterisation Methods: Techniques like dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to analyse particle size, morphology, and emulsion stability.

Herbal and Plant-Based Active Compounds Delivered by SEDDS

- 1. Curcumin: A lipophilic compound found in turmeric with well-documented benefits in anti-inflammatory and anticancer therapy. SEDDS formulations have significantly improved their solubility and bioavailability.[16][17]
- 2. **Resveratrol**: A polyphenol from grape skins and berries known for its antioxidant effects. SEDDS formulations enhance their pharmacokinetics.[18][19]

- **3. Quercetin**: A flavonoid with antiinflammatory and antioxidant properties. SEDDS increases its solubility and bioavailability for better therapeutic outcomes. [20][21][22]
- **4. Camptothecin**: An alkaloid with anticancer properties. SEDDS has been used to improve its stability and bioavailability. [23][24]
- **5. Berberine**: A plant alkaloid with antimicrobial, anti-inflammatory, and metabolic benefits. SEDDS improves its bioavailability and therapeutic efficacy. [25][26][27]
- 6. Ginseng and Ginsenosides: SEDDS formulations improve the solubility of ginsenosides, the active components in ginseng, enhancing their therapeutic potential. [25]

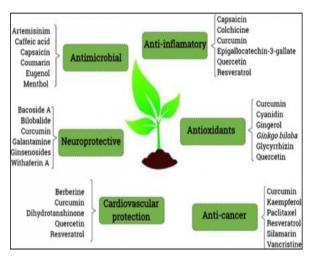


Fig.2. Examples of natural compounds extracted from higher plants used in nanomedicine aiming at different approaches. Some of these extracts are already being marketed, others are in clinical trials, and others are being extensively studied by the scientific community[28]

Components of SEDDS:[29][30]

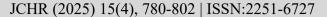
- 1. Lipid phase
- 2. Surfactants
- 3. Co-surfactants

www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

Table 1: Example of Surfactants, Co-Surfactants and Co-Solvents Used in Commercial

Formulations.[31][32][33][34][35][36][37]


Surfactants/	Polysorbate 20 (Tween 20),
Co-	Polysorbate 80 (Tween 80),
surfactants	Sorbitan monooleate (Span 80),
	Polyoxy-40-hydrogenated castor
	oil (Cremophor RH40),
	Polyoxyethylated glycerides
	(Labrafil M 2125 Cs),
	Polyoxyethlated oleic glycerides
	(Labrafil M1944 Cs).
Co-solvents	Ethanol, Glycerin, Polypylene

	glycol, Polyethylene glycol				
	Corn oil, Mono, di, tri-glycerides,				
Lipid	DL-alpha-Tocopherol,				
ingredients	Fractionated triglyceride of palm				
	seed oil (medium-chain				
	triglyceride), Medium chain				
	mono-and di-glycerides, Corn oil,				
	Olive oil, Oleic acid, Soyabean				
	oil, Peanut oil, Beeswax,				
	Hydrogenated vegetable oils.				

Table 2: Comparative Advantages and Disadvantages of Phytopharmaceuticals and Synthetic Drugs in SMEDDS[38][39]

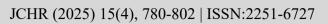
Sr. No	Criteria	Phytopharmaceuticals (Herbal Drugs)	Synthetic Drugs
1.	Source & Composition	Natural origin, complex mixture of bioactive compounds[40]	Chemically synthesized, single, well-defined molecules
2.	Solubility Issues	Most are poorly water-soluble, benefiting greatly from SMEDDS	Many are poorly soluble (especially BCS Class II & IV), and also benefit
3.	Bioavailability Enhancement	SMEDDS significantly enhances the bioavailability of hydrophobic plant compounds	SMEDDS improves oral bioavailability and onset of action
4.	Safety Profile	Generally safer, but may contain unknown or toxic constituents if unpurified	Safety profile well- established through clinical studies
5.	Standardization Difficulty	High: batch-to-batch variation, multiple active components	Low: consistent purity and potency of APIs
6.	6. Regulatory Approval	Slower due to a lack of global harmonization and quality control issues	Faster, with well-defined regulatory pathways
7.	Targeted Delivery via SMEDDS	Possible, but harder to control due to multi-component nature	Easier due to known pharmacokinetics and physicochemical properties

www.jchr.org

8.	Cost of Development	Lower initial cost but higher complexity in formulation standardization	Higher R&D cost, but scalable and predictable
9.	Therapeutic Action	Often multi-targeted with synergistic effects	Usually specific to a particular target or mechanism
10.	Compatibility with SMEDDS	Can be challenging due to instability, large molecular size, or complexity	High compatibility; synthetic drugs can be optimized for SMEDDS

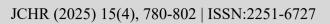
Role of SEDDS in Herbal and Plant-Based Drug Delivery

The role of Self-Emulsifying Drug Delivery Systems (SEDDS) in herbal and plant-based drug delivery is significant because it addresses some of the major challenges that these types of drugs face, such as poor solubility, low bioavailability, and instability in the gastrointestinal tract. Many herbal and plant-derived compounds are lipophilic (fat-soluble) and exhibit poor water solubility, which limits their absorption and, consequently, their therapeutic efficacy. SEDDS provides an innovative solution to these problems, enhancing the bioavailability of such compounds and enabling more effective drug delivery.

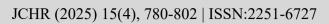

Herbal/Plant-Based Drug Characteristics: [41]

Low solubility, high molecular weight, and variable Pharmacokinetics of many plant-based compounds. **Challenges**: Inconsistent bioavailability and gastrointestinal stability, which hinder their therapeutic efficacy. **SEDDS Applications**:

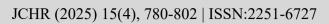
- 1. **Improvement of Solubility**: SEDDS can increase the solubility of hydrophobic herbal compounds by solubilising them in lipdic formulations.
- **2. Enhanced Absorption**: SEDDS can promote lymphatic drug absorption, reducing the first-pass metabolism and improving the bioavailability of herbal drugs.
- 3. Targeted Drug Delivery: The potential for targeted delivery to specific sites in the GI tract or systemic circulation. [42][40][43]


Table 3. Literature updates on various reports of Solubility /Bioavailability enhancement using herbal drugs self-emulsifying delivery system formulations.

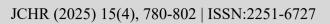
Sr. No	Publish ed Year	Title of Research Article	Autho r Name	Publication/Jo urnal Name	Findings
1	2022	Optimization of supercritical	Monto	The Journal of	SEDDS Formulation: Cannabis extract was
		carbon dioxide fluid	n,	Supercritical	formulated into a self-emulsifying drug delivery
		extraction of seized cannabis	Chaow	Fluids	system (SEDDS) to improve dissolution.
		and self-emulsifying drug	alit	179(2022)1054	Outcome: The optimised SEDDS significantly
		delivery system for enhancing	Chank	23	enhanced the dissolution of SFE-derived
		the dissolution of cannabis	ana,		cannabis extract.[44]
		extract	Nataw		



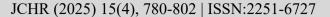
			at Leelaw at et al.		
2	2022	SEDDS-loaded mucoadhesive fiber patches for advanced oromucosal delivery of poorly soluble drugs	Julian David Friedl, Marcel Walthe r et al.	Journal of Controlled Release 348 (2022) 692–705	Patch Development: Electrospun patches combining mucoadhesive fibres and SEDDS were developed. Enhanced Residence: Thiolated fibers extended buccal residence time by 200-fold. Efficacy & Safety: Curcumin-loaded patches showed biocompatibility and enhanced therapeutic effects on human keratinocytes and fibroblasts.[45]
3	2021	Enhanced oral bioavailability of rutin by a self-emulsifying drug delivery system of an extract of calyces from Physalisperuviana	María I. Cardo naa, Gina P. Domin guez et al.	Journal of Drug Delivery Science and Technology 2021	Formulation Optimisation: Used Box-Behnken design; optimal SEDDS included 10% Labrafac, 45% Solutol HS 15, 32% propylene glycol, and 13% PDMSHEPMS, with 45% extract loading. Bioavailability Boost: Pharmacokinetics revealed a 6-fold increase in oral bioavailability of rutin versus the unformulated extract. [21]
4	2021	Formulation optimization of solid self micro emulsifying pellets for enhanced oral bioavailability of curcumin	Kang Sha, Qianfa ng Ma et al.	Pharmaceutical Development and Technology 2021	Optimal SMEDDS Composition: 10% ethyl oleate, 57.82% Cremophor RH 40, and 32.18% Transcutol P. Solidification: Curcumin S-SMEDDS pellets were produced via extrusion–spheronization. Pharmacokinetics: In rabbits, AUC₀–∞ of S-SMEDDS was 5.91 ± 0.28 mg·h/mL vs. 2.05 ± 0.04 mg·h/mL for suspension, with 289.3% relative bioavailability [15]
5	2021	Hydroalcoholic Extract of Myrciabella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential	Gabrie l Davi Maren a, Luiza Girott et al.	Bibliography Planta Med 2021	Antifungal Activity: M. bella-loaded microemulsion was tested against Candida spp. using the microdilution method for MIC determination. Safety & Efficacy: Ames test confirmed safety; M. bella, both free and incorporated, showed significant antifungal activity across all tested strains.[46]
6	2021	Preparation of Microemulsion from an Alkyl Polyglycoside Surfactant and Tea Tree Oil	Thuy- Vi V, Ya-Yen Chou et al.	Molecules 2021, 26, 1971	Formulation: Microemulsions were developed using plant-derived alkyl polyglycoside (APG) surfactant and <i>Melaleuca alternifolia</i> (tea tree) essential oil. Stability: A stable microemulsion (1% TTO, 9% Triton CG-110/PPG at 1.8:1 w/w) remained unaffected by time and temperature.[47]



7	2021	Drug Delivery and	Xia	Journal of	Formulation Purpose: Developed a zingerone-
,	2021	Pharmaceutical Technology Improvement of Oral Bioavailability and Anti- Tumor Effect of Zingerone Self-Microemulsion Drug Delivery System	Cao, Qin Zhu et al.	Pharmaceutical Sciences 110 (2021) 2718- 2727	loaded self-micro emulsifying drug delivery system (Z-SMEDDS) to enhance oral bioavailability and anti-tumor activity. Improved Release & Bioavailability: Z-SMEDDS showed significantly higher in vitro release and 7.63-fold greater oral bioavailability than free zingerone. Conclusion: Results support the potential clinical application of Z-SMEDDS.[48]
8	2020	A butanolic fraction from the standardized stem extract of Cassia occidentalis L delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy	Subhas his pal, naresh Mittap elly et al.	Scientific Reports 2020	Enhanced Bioavailability: BuF increased circulating levels of five osteogenic compounds versus CSE-Bu. Bone Regeneration: CSE-BuF (50 mg/kg) enhanced bone healing at the osteotomy site and prevented Mp-induced bone loss via osteogenic and anti-resorptive actions.[49]
9	2020	Curcumin-Loaded Self- Microemulsifying Gel for Enhancing Wound Closure	Jiun Wen Guo , Chi- Ming Pu et al.	Skin Pharmacology and Physiology 2020	Improved Skin Delivery: Curcumin-loaded self-micro-emulsifying gel showed superior skin flux, cumulative amount, and permeability compared to commercial gels, along with enhanced wound healing. Study Method: Ex vivo skin permeation was assessed using BALB/c mouse skin and a diffusion cell system.[50]
10	2020	Enhanced oral bioavailability of Bisdemethoxy curcumin-loaded self-microemulsifying drug delivery system: Formulation design, in vitro and in vivo evaluation	Jian Liua, Qilong Wang et al.	InternationalJou rnalofPharmace utics590(2020)1 19887	Goal: Address poor solubility and bioavailability of bismethoxy curcumin (BDMC) by developing a BDMC-loaded self-micro-emulsifying drug delivery system (BDMC-SMEDDS). Potential: BDMC-SMEDDS improved BDMC solubility and bioavailability, supporting clinical application.[51]
11	2019	Anti-inflammatory effect of self-emulsifying delivery system containing Sonchusoleraceus Linn extract on streptozotocininduced diabetic rats	Lei Chena, Xiujun Lina, Xiaow ei Xua et al.	Food and Chemical Toxicology, Elsevier 2019	Study Findings: SSEDDS showed anti- inflammatory effects in streptozotocin-induced diabetic rats, which exhibited elevated plasma glucose and decreased insulin levels.[52]
12	2019	Novel oral dosage regimen based on self- nanoemulsifying drug delivery systems for	Majed Alwad ei, Mohsi	Saudi Pharmaceutical Journal 27(2019)866-	Formulation: Developed curcumin and thymoquinone SNEDDS, solidified using Syloid and Neusilin adsorbents. Outcome: Successfully created liquid and solid



		codelivery of phytochemicals – Curcumin and thymoquinone	n Kazi et al.	876	curcumin-thymoquinone SNEDDS with enhanced drug loading and dissolution, promising for anti-inflammatory and anti-cancer therapies.
13	2019	Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating propertie.	Maria I. Cardo na, Nguyet -Minh Nguye n Le et al.	International Journal of Pharmaceutics S0378- 5173(19)30222- 4	Objective: Evaluated a SEDDS for oral delivery of rutin fatty ester with enhanced mucus permeation by adding PDMSHEPMS polymer. Conclusion: SEDDS with PDMSHEPMS shows promise for improving rutin's oral bioavailability [21]
14	2018	Development of self- nanoemulsifying drug delivery systems for oil extracts of Citrus aurantium L. blossoms and Rose damascena and evaluation of anticancer propertie.	R. Nazari - Vanani , N. Azarpi ra, H. Heli et al.	Journal of Drug Delivery Science and Technology 2018	Development: SNEDDS formulated to enhance the efficacy of Citrus aurantium and Rose damascena oil extracts. Efficacy: Cytotoxicity assays on MCF7 and PANC1 cells showed increased toxicity of extracts via SNEDDS, suggesting a promising oral delivery method.[53]
15	2018	Self-emulsifying drug deliverysystem improves preventive effect of curcuminoids on CHF in rats.	Jiang, Y. et al	Saudi Pharmaceutical Journal (2018),	Objective: Investigated if SEDDS improves the preventive effect of curcuminoids on chronic heart failure (CHF) in rats (model via coronary artery ligation). Findings: Curcuminoid SEDDS showed significantly better therapeutic effects than curcuminoid suspension.[54]
16	2018	Pharmacodynamic evaluation of self-micro-emulsifying formulation of standardised extract of Lagerstroemia speciosa for antidiabetic activity.	Vipin Kumar Agarw al et al.	Journal of Ayurveda and Integrative Medicine 9(2018) 38-44	Goal: Developed a self-microemulsifying formulation (SME) of standardised <i>SEL</i> leaf extract for antidiabetic activity. Results: SME formulation showed greater blood glucose reduction than non-SME <i>SEL</i> , with significant effects at 100 mg/kg by day 15. Conclusion: SME formulation enhanced <i>SEL</i> 's pharmacodynamic effect by about twofold.[55]
17	2018	Development and characterisation of clove oil nanoemulsions and self-microemulsifying drug delivery systems	Kanta porn Kheaw fu, Surach ai Pikulk	Journal of Drug Delivery Science and Technology S1773- 2247(18)30016- 9	Objective: Developed ethanol-reduced/noethanol clove oil nanoformulations to improve aqueous miscibility for fish anaesthesia. Results: Anaesthesia induction times in goldfish were shorter for C-NE $(4.0 \pm 0.6 \text{ min})$ and C-SMEDDS $(3.8 \pm 0.9 \text{ min})$ compared to ethanolic clove oil $(5.0 \pm 0.9 \text{ min})$; recovery times were


			aew et		similar.[56]
18	2018	Enhanced anticancer effect of Bruceajavanica oil by solidified self- microemulsifying drug delivery system	al. Wenli Huang a, Huanp eng Su et al.	Journal of Drug Delivery Science and Technology 48 (2018) 266– 273	Formulation: Developed solid self-microemulsifying drug delivery system (S-SMEDDS) of BJO. Efficacy: Demonstrated promising antitumor effects on A549 (lung) and DU145 (prostate) cancer cell lines, suggesting potential for improved cancer treatment.
19	2018	Self-nanoemulsifying drug delivery systems (SNEDDS)and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs	Marko Krstic, Đorðe Medar evic et al.	Chapter 12 Lipid Nanocarriers for Drug Targeting. DOI: http://dx.doi.org /10.1016/B978- 0-12-813687- 4.00012-8 © 2018 Elsevier Inc. All rights reserved	Lipid-based drug delivery systems effectively enhance the bioavailability of poorly soluble drugs through mechanisms distinct from other delivery methods.[57]
20	2017	Overview of solidification techniques for self- emulsifying drug delivery systems from industrial perspective	Mandi ć, J., Zvonar Pobirk et al.	International Journal of Pharmaceutics S0378- 5173(17)30448- 9	Various industrial solidification techniques and excipients enable transforming liquid SEDDS into solid dosage forms with high yield and scalability for large-scale production.[58]
21	2017	Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries	Antóni a Gonça lves , Nooshi n Nikma ram et al.	Colloids and Surfaces A: Physicochem. Eng. Aspects S0927- 7757(17)30976- 7	Overview: Review covers lipid-based carriers for encapsulating nutraceuticals and pharmaceuticals, detailing their structure, components, production, and applications. Challenges: Discusses potential issues of using S-SMEDDS and S-SNEDDS in food and pharmaceutical industries[59].
22	2015	Curcumin–piperine mixtures In self-microemulsifying drug Delivery system for ulcerative Colitis therapy	Li,Q. et al	International Journal of Pharmaceutics. 2015	Formulation: Encapsulated two hydrophobic compounds, curcumin (CUR) and piperine (PIP), in SMEDDS. Efficacy: CUR-PIP-SMEDDS showed clear anticolitis effects in a DSS-induced colitis model via retention enema targeting inflammatory colon tissue.[16]

23	2015	Stability and performance	Zhifen	Separation and	Emulsion Preparation: Stable W/O emulsion
23	2013	study of newly developed	g Guo	Purification	made using polymeric rubber additives (PBSR or
		emulsion	Jingji,	Technology xxx	PBR) as emulsifiers instead of Span 80, with
		prepared with polymeric		(2015) xxx–xxx	kerosene as the organic phase.
		rubber emulsifier and using	ng Dong	(2013) XXX—XXX	Findings: Rubber emulsifiers functioned like
		the emulsion	_		S
			et al.		surfactants; nicotine transfer to the strip phase
		for nicotine extraction			reached over 99% efficiency within 2
2.1	2012	7: :1 1 1:1 10	17. 0		minutes.[60]
24	2013	Liquid and solid self-	Namfa	European	Formulation: SMEDDS composed of A.
		microemulsifying drug	Sermk	Journal of	paniculata extract (11.1%), Capryol 90 (40%),
		delivery systems for	aew,	Pharmaceutical	Cremophor RH 40 (40%), and Labrasol (8.9%).
		improving the oral	Wicha	Sciences 2013	Effectiveness: Both liquid and solid SMEDDS
		bioavailability of	n		improved dissolution and oral bioavailability of
		andrographolide from a crude	Ketjin		A. paniculata extract.
		extract of	da et		Benefit: Enhanced bioavailability may allow
		Andrographispaniculata	al.		dose reduction of the poorly soluble extract.[61]
25	2012	Enhancement of anti-	Siripor	Drug	Objective: Enhanced cholinesterase inhibitory
		cholinesterase activity of	n	Discoveries &	activity of Zingiber cassumunar (ZC) oil via
		Zingiber cassumunar essential	Okono	Therapeutics.	microemulsion (ME) formulation.
		oil using a microemulsion	gi,	2012; 6(5):249-	Potential: ZC oil ME is promising for further
		technique	Wantid	255.	characterisation and in vivo Alzheimer's disease
			а		studies.[62]
			Chaiya		
			na et		
			al.		
26	2011	Enhanced Oral Bioavailability	Yi-	Regular	Formulation: Curcumin-loaded SEDDS
		of Curcumin via a Solid	Dong	Articles 2011	developed into solid form via spray drying using
		Lipid-Based Self Emulsifying	YAN,	Pharmaceutical	Aerosil 200.
		Drug Delivery System Using	Jung	Society of	Pharmacokinetics: Oral administration in rats
		a Spray-Drying Technique	Ae	Japan.	showed significant absorption improvement;
			KIM et		Cmax and AUC increased 4.6- and 7.6-fold,
			al.		respectively, when the dose rose from 25 to 100
					mg/kg.[63]
27	2011	Self-nanoemulsifying drug	Wanw	International	Formulation: Developed SNEDDS of
		delivery system of persimmon	en Li,	Journal Of	persimmon (Diospyros kaki) leaf extract (PLE)
		leaf extract: Optimization and	Shaoli	Pharmaceutics	and compared with commercial Naoxinqing
		bioavailability studies	ng Yi,	420 (2011)	tablets.
			Zhouh	161–	Bioavailability: Oral administration of PLE-
			иа	171	SNEDDS in fasting beagle dogs increased AUC
			Wang		of quercetin and kaempferol by 1.5-fold and 1.6-
			et al.		fold, respectively.
					Conclusion: SNEDDS is a promising system to
					enhance oral bioavailability of PLE[64].
28	2011	Pharmaceutical	Xiaole	International	Mechanism: SDEDDS forms w/o/w double
		Nanotechnology Self-double-	Qi,	Journal of	emulsions in the gastrointestinal environment,
		emulsifying drug delivery	Lishua	Pharmaceutics	encapsulating drugs in the internal water phase.
		system (SDEDDS): A new	ng	409 (2011)	Safety: Histopathology confirmed no serious
		J (== 2 2). 11 112	0	(=011)	or of the serious

www.jchr.org

		way for oral delivery of drugs	Wang	245-251	local damage, showing SDEDDS as a safe and
		with high solubility and low	et al.		effective delivery system for peptides and
		permeability			peptidomimetics [65]
29	2010	Self-nanoemulsifying drug	Yi	International	Formulation: Developed SNEDDS for oral
		delivery system (SNEDDS)	Zhaoa,	Journal of	delivery of Zedoary turmeric oil (ZTO) from
		for oral delivery	Chang	Pharmaceutics	Curcuma zedoaria rhizome.
		of Zedoary essential oil:	guang	383 (2010)	Bioavailability: Oral administration in rats
		Formulation and	Wanga	170–177	increased AUC and Cmax of germacrone (GM)
		bioavailability studies	et al.		by 1.7-fold and 2.5-fold, respectively, compared
					to unformulated ZTO.
30	2009	Formulation Development	Jia Xi,	AAPS Pharm	Formulation: SNEDDS for OA (20 mg/g) was
		and Bioavailability Evaluation	Qi	SciTech, Vol.	prepared with Sefsol 218 (oil), Cremophor EL,
		of a Self-Nanoemulsified	Chang	10, No. 1,	Labrasol (surfactants), and Transcutol P (co-
		Drug Delivery System of	et al.	March 2009	surfactant).
		Oleanolic Acid			Purpose: Demonstrates SNEDDS' potential to
					enhance dissolution and oral bioavailability of
21	2000		6 11 1		poorly water-soluble triterpenoids like OA.[66]
31	2008		Sukhde		This book provides techniques for extract
			v Swami	International	production, aimed at helping emerging and developing countries create economical, high-
		Extraction Technologies	'Hand	Centre For	quality, and globally competitive extracts.[41]
		for Medicinal and Aromatic	a	Science And	quanty, and globally competitive extracts.[41]
		Plants	Suman	High	
		Tants	'Preet	Technology	
			Singh	Trieste, 2008	
			et al.		
32	2005	Rapid communication In vitro	Anthon	International	
		evaluation of drug release	<i>y A</i> .	Journal of	
		from self micro-emulsifying	Attama	Pharmaceutics	
		drug delivery systems using a	, Megg	304 (2005) 4-	Formulation: SMEDDS were developed using
		biodegradable homolipid from	O et al.	10	biodegradable homolipid from Capra hircus,
		Capra hircus.			Tween 65, and contained piroxicam (lipophilic),
					chlorpheniramine maleate (hydrophilic), and
					metronidazole (Hydrolipophilic).
					Release Studies: Conducted in simulated gastric
					fluid (SGF).
					Conclusion: This approach could be a versatile
					and reliable alternative to conventional drug
					delivery methods.[67]

Herbal drug development faces various problems and challenges, despite the long history of herbal medicine use.

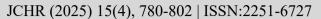
1. Lack of Standardisation: One major challenge is the lack of standardisation in the

preparation of herbal medicines. Different plants can vary in their chemical composition depending on factors like geographic location, growing conditions, and harvesting methods. This variability can lead to inconsistent effects in herbal remedies. [68]

www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

- 2. Quality Control Issues: Ensuring the quality and purity of herbal products is a significant concern. There is no universally accepted method for testing the identity, purity, and strength of herbal ingredients, leading to potential contamination and adulteration. This is particularly problematic for consumers' safety. [69]
- 3. Limited Scientific Evidence: While herbal medicines have been used for centuries, there is still a lack of extensive clinical trials and scientific research proving the efficacy and safety of many herbal medicines. In modern medicine, rigorous scientific evaluation is crucial, and herbal medicine sometimes lacks this level of evidence.[70]
- 4. Regulatory and Legal Issues: - Herbal drugs are not always subjected to the same regulatory oversight conventional as pharmaceuticals. In many countries, herbal may be categorized products as dietary supplements, which means they are less rigorously tested and regulated. This creates gaps in consumer protection.
- 5. Cultural and Knowledge Gaps:-Traditional herbal knowledge, often passed down through generations, is difficult to document and sometimes lost in modern contexts. There is also a gap in understanding between traditional healers and modern medical researchers, which limits the integration of traditional knowledge with modern drug development.
- 6. Sustainability and Environmental Impact: The demand for medicinal plants has increased, leading to concerns about the sustainability of plant harvesting. Over-harvesting and habitat destruction threaten the availability of some plant species, which can reduce biodiversity and undermine the future supply of medicinal plants.
- 7. Public Perception and Education: There is still a lack of education around the proper use of herbal remedies. While they are generally perceived as safer than synthetic drugs, herbal


- medicines can still have side effects or interact negatively with other medications. Public awareness campaigns are often needed to educate consumers about the benefits and risks.
- 8. Economic and Market Challenges: Despite the potential economic benefits, the market for herbal medicines is often fragmented, with insufficient infrastructure to support large-scale commercial production. Supply chains may be underdeveloped, and profitability can be inconsistent due to the variability in quality and demand.[71]

Solutions and Recommendations

- Research and Development: More scientific research, especially clinical trials, should be conducted to validate the efficacy and safety of herbal drugs.[71]
- Standardisation and Quality Control: Developing and implementing standardised methods for testing herbal drugs can help ensure quality and safety.[1][72]
- Regulation and Legislation: Governments need to establish clear regulations for herbal medicine, ensuring that products meet safety standards while allowing for innovation. [25][71]
- **Sustainable Practices**: Encouraging sustainable harvesting practices and promoting the cultivation of medicinal plants can help preserve biodiversity and ensure a steady supply.[14][41]

Challenges and Limitations [69][73][74][59][75][76][77][6]

- 1. **Stability Issues**: While SEDDS improve solubility, they can face stability issues over time, including phase separation or degradation of the active ingredient.
- 2. **Regulatory Challenges**: The approval process for herbal-based SEDDS formulations can be more complex compared to synthetic drugs.

- 3. **Scalability and Cost**: Large-scale production of SEDDS can be expensive and technically challenging.
- **4. Potential Toxicity**: Excessive use of surfactants or co-surfactants may lead to toxicity or gastrointestinal irritation.

Table 4. Marketed SMEDDS Preparation: Phytopharmaceuticals vs. Synthetic Drug

Drug Type	Drug Name	Brand/Marketed Name	Company	Purpose / Indication	SMEDDS Benefit
Synthetic	Cyclosporine A	Sandimmun Neoral®	Novartis	Immunosuppressant (post-transplant)	Enhanced absorption & consistent bioavailability [78][79]
Synthetic	Ritonavir	Norvir®	AbbVie	Antiretroviral (HIV)	Improved solubility and oral bioavailability [80][81]
Synthetic	Saquinavir	Fortovase®	Hoffmann -La Roche	Antiretroviral (HIV)	Enhanced solubility and GI absorption[82] [80][81]
Synthetic	Simvastatin	Zocor® (SMEDDS formulation in studies)	Merck	Lipid-lowering agent (hyperlipidemia)	1.5x increase in oral bioavailability [83][84][85][8 6][87]
Phytopharm aceutical	Curcumin	Not yet fully commercialized (researched)	-	Anti-inflammatory, antioxidant	Greatly enhanced solubility and bioavailability [88][50][89]
Phytopharm aceutical	Silymarin	Research-based SMEDDS	-	Hepatoprotective (liver disorders)	Improved systemic absorption [90][91][92]
Phytopharm aceutical	Berberine	Experimental SMEDDS	-	Antidiabetic, antimicrobial	Enhanced oral bioavailability [93][94][68][28]

www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

	Phytopharm	Mangiferin	Research-based SMEDDS	-	Antioxidant, anti-	Enhanced
						solubility and
	aceutical					GI absorption
	aceuticai					[15][95][40][1
						3]

Future Directions

1. **Nanotechnology Integration**:

Incorporating nanocarriers like solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) with SEDDS for improved targeting and stability.[77]

- 2. **Personalised Medicine**: Development of personalised SEDDS formulations based on individual patient needs.[75]
- 3. **Regulatory Acceptance**: More robust clinical evidence and regulatory pathways for herbal-based SEDDS formulations.[96][1][6]
- 4. **Sustainable and Green Chemistry Approaches**: Exploration of natural,

biocompatible surfactants and co-surfactants in SEDDS.[35][97][98][99]

Conclusion:

Self-Micro Emulsifying Drug Delivery Systems (SMEDDS) offer a promising strategy overcome the poor solubility and limited bioavailability commonly associated with herbal and plant-based drugs. By forming fine oil-inwater emulsions upon mild agitation gastrointestinal fluids, SMEDDS significantly drug dissolution, absorption, enhance therapeutic efficacy. This delivery system thus represents a valuable advancement in maximising the clinical potential of phytoconstituents, paving the way for more effective and reliable herbal therapeutics.

Abbreviations: -

SMEDDS: Self-micro-emulsifying drug delivery system

BCS: Biopharmaceutical

Classification System

S-SMEDDS: Solid Self-micro-emulsifying

drug delivery system

L-SMEDDS: Liquid Self-microemulsifying drug delivery system

TCM: Traditional Chinese Medicine

SEDDS: Self-Emulsifying Drug

Delivery Systems

DLS: Dynamic Light Scattering
SEM: Scanning Electron Microscopy

APIs: Active pharmaceutical

ingredients

HIV: Human Immunodeficiency

Virus

SLNs: Solid Lipid Nanoparticles

Declarations: -

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements: -

I would like to express my sincere gratitude to Dr. P. B. Shamkuwar, Principal, Government College of Pharmacy, Aurangabad (Chh. Sambhajinagar), for their invaluable guidance, support, and encouragement throughout this research. Their insightful feedback and continuous motivation have been instrumental in shaping this work.

I am also thankful to Research Guide Dr. Shweta G. Tapadiya (Assistant Professor), Pharmacognosy Department, Government College of Pharmacy, Aurangabad (Chh.

www.jchr.org

JCHR (2025) 15(4), 780-802 | ISSN:2251-6727

Sambhajinagar), for their constructive suggestions and technical assistance.

This work was carried out without the support of any targeted funding from public, private, or nonprofit sources.

References: -

- [1] H. Wang, Y. Chen, L. Wang, Q. Liu, S. Yang, and C. Wang, "Advancing herbal medicine: enhancing product quality and safety through robust quality control practices," 2023, *Frontiers Media SA*. doi: 10.3389/fphar.2023.1265178.
- [2] F. Carrière, "Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs," Jun. 01, 2016, *Elsevier B.V.* doi: 10.1016/j.biochi.2015.11.016.
- [3] S. Akula, A. K. Gurram, and S. R. Devireddy, "Self-Microemulsifying Drug Delivery Systems: An Attractive Strategy for Enhanced Therapeutic Profile," *Int. Sch. Res. Not.*, vol. 2014, pp. 1–11, 2014, doi: 10.1155/2014/964051.
- [4] S. R. Sokkula and S. Gande, "A Comprehensive Review on Self-Nano Emulsifying Drug Delivery Systems: Advancements & Applications," *Int. J. Pharm. Sci. Drug Res.*, vol. 12, no. 5, pp. 576–583, 2020, doi: 10.25004/ijpsdr.2020.120522.
- [5] N. T. Mohd.Junaid, "Formulation and Evaluation of a Lipid Based Drug Delivery System for the Delivery of Poorly Water Soluble Drug," *Pharma Sci. Monit.*, vol. 9, no. 1, pp. 521–550, 2018, [Online]. Available: http://www.pharmasm.com/pdf_files/201 80401024200 46 junaid.pdf
- [6] S. Arora, B. Singh, S. Kumar, A. Kumar,

- A. Singh, and C. Singh, "Piperine loaded drug delivery systems for improved biomedical applications: Current status and future directions," *Heal. Sci. Rev.*, vol. 9, no. November, p. 100138, 2023, doi: 10.1016/j.hsr.2023.100138.
- [7] T. C. Ezike *et al.*, "Advances in drug delivery systems, challenges and future directions," *Heliyon*, vol. 9, no. 6, p. e17488, 2023, doi: 10.1016/j.heliyon.2023.e17488.
- [8] published by Dove Press, "Selfnanoemulsifying drug delivery systems (SNEDDS) for the oral delivery of lipophilic drugs Tianjing Zhao," 2015.
- [9] K. Khedekar and S. Mittal, "Self emulsifying drug delivery system: A review," *Int. J. Pharm. Sci. Res.*, vol. 4, no. 12, p. 4494, 2013, doi: 10.13040/IJPSR.0975-8232.4(12).4494-07.
- [10] R. B. Mistry and N. S. Sheth, "A review: Self emulsifying drug delivery system," *Int. J. Pharm. Pharm. Sci.*, vol. 3, no. SUPPL. 2, pp. 23–28, 2011.
- [11] K. H. V and K. V. D, "Review Article A REVIEW ON SELF EMULSIFYING DRUG DELIVERY SYSTEM," vol. 1, no. 1, pp. 353–359, 2012.
- [12] V. R. Potphode, A. S. Deshmukh, and V. R. Mahajan, "Self-Micro Emulsifying Drug Delivery System: An Approach for Enhancement of Bioavailability of Poorly Water Soluble Drugs," *Asian J. Pharm. Technol.*, vol. 6, no. 3, p. 159, 2016, doi: 10.5958/2231-5713.2016.00023.4.
- [13] N. Nasim, I. S. Sandeep, and S. Mohanty, "Plant-derived natural products for drug discovery: current approaches and

www.jchr.org

- prospects," *Nucl.*, vol. 65, no. 3, pp. 399–411, 2022, doi: 10.1007/s13237-022-00405-3.
- [14] N. Chaachouay and L. Zidane, "Plant-Derived Natural Products: A Source for Drug Discovery and Development," *Drugs Drug Candidates*, vol. 3, no. 1, pp. 184–207, Feb. 2024, doi: 10.3390/ddc3010011.
- [15] L. Zhang *et al.*, "Self-emulsifying drug delivery system and the applications in herbal drugs," *Drug Deliv.*, vol. 22, no. 4, pp. 475–486, 2015, doi: 10.3109/10717544.2013.861659.
- [16] Q. Li *et al.*, "Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy," *Int. J. Pharm.*, vol. 490, no. 1–2, pp. 22–31, May 2015, doi: 10.1016/j.ijpharm.2015.05.008.
- [17] J. Cui *et al.*, "Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems," *Int. J. Pharm.*, vol. 371, no. 1–2, pp. 148–155, Apr. 2009, doi: 10.1016/j.ijpharm.2008.12.009.
- [18] T. Vasconcelos *et al.*, "Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile," *Eur. J. Pharm. Sci.*, vol. 137, Sep. 2019, doi: 10.1016/j.ejps.2019.105011.
- [19] K. Bolko Seljak, I. G. German Ilić, M. Gašperlin, and A. Zvonar Pobirk, "Selfmicroemulsifying tablets prepared by direct compression for improved resveratrol delivery," *Int. J. Pharm.*, vol. 548, no. 1, pp. 263–275, Sep. 2018, doi: 10.1016/j.ijpharm.2018.06.065.

- [20] A. Alexander, Ajazuddin, R. J. Patel, S. Saraf, and S. Saraf, "Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives," Nov. 10, 2016, *Elsevier B.V.* doi: 10.1016/j.jconrel.2016.09.017.
- [21] M. I. Cardona, N. M. Nguyen Le, S. Zaichik, D. M. Aragón, and A. Bernkop-Schnürch, "Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties," *Int. J. Pharm.*, vol. 562, pp. 180–186, May 2019, doi: 10.1016/j.ijpharm.2019.03.036.
- [22] C. Yalavarthi and T. V S, "123-140 ©JK Welfare & Pharmascope Foundation," 2013. [Online]. Available: www.ijrps.pharmascope.org
- [23] D. M. Dhumal and K. G. Akamanchi, "Self-microemulsifying drug delivery system for camptothecin using new bicephalous heterolipid with tertiary-amine as branching element," *Int. J. Pharm.*, vol. 541, no. 1–2, pp. 48–55, Apr. 2018, doi: 10.1016/j.ijpharm.2018.02.030.
- [24] L. M. Negi, M. Tariq, and S. Talegaonkar, "Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation," *Colloids Surfaces B Biointerfaces*, vol. 111, pp. 346–353, Nov. 2013, doi: 10.1016/j.colsurfb.2013.06.001.
- [25] A. Singh, M. Kalaivani, P. Chaudhary, S. Srivastava, R. Kumar Goyal, and S. K.

www.jchr.org

- Gupta, "Opportunities and Challenges in Development of Phytopharmaceutical Drug in India- A SWOT Analysis," *J. Young Pharm.*, vol. 11, no. 3, pp. 322–327, 2019, doi: 10.5530/jyp.2019.11.66.
- [26] S. Maher, C. Geoghegan, and D. J. Brayden, "Safety of surfactant excipients in oral drug formulations," Nov. 01, 2023, *Elsevier B.V.* doi: 10.1016/j.addr.2023.115086.
- [27] A. B. Buya, A. Beloqui, P. B. Memvanga, and V. Préat, "Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery," Dec. 01, 2020, *MDPI AG*. doi: 10.3390/pharmaceutics12121194.
- [28] J. K. Patra *et al.*, "Nano based drug delivery systems: Recent developments and future prospects," *J. Nanobiotechnology*, vol. 16, no. 1, pp. 1–33, 2018, doi: 10.1186/s12951-018-0392-8.
- [29] S. L. Patil, I. J. Pharm, B. Sci, P. M. Nigade, and S. S. Tiwari, "International Journal of Pharmacy and Biological Sciences (eISSN: 2230-7605) SELF EMULSIFYING DRUG DELIVERY SYSTEM (SEDDS): A Review."
 [Online]. Available: www.ijpbs.com
- [30] H. Park, E. S. Ha, and M. S. Kim, "Current status of supersaturable self-emulsifying drug delivery systems," *Pharmaceutics*, vol. 12, no. 4, 2020, doi: 10.3390/pharmaceutics12040365.
- [31] S. Subramaniam *et al.*, "Self-emulsifying drug delivery systems (SEDDS) disrupt the gut microbiota and trigger an intestinal inflammatory response in rats,"

- *Int. J. Pharm.*, vol. 648, p. 123614, Dec. 2023, doi: 10.1016/j.ijpharm.2023.123614.
- [32] P. Mehta, P. Parekh, and M. P. Preeti, "Self Emulsifying Drug Delivery System: A novel approach to enhance oral bioavailability of poorly soluble drugs," *Artic. J. Pharm. Res.*, vol. 4, no. 7, pp. 2191–2194, 2011, [Online]. Available: https://www.researchgate.net/publication/259632090
- [33] N. Pujara and N. D. Pujara, "Self-Emulsifying Drug Delivery System: A Novel Approach." [Online]. Available: https://www.researchgate.net/publication/270823140
- [34] "document".
- [35]P. Jaiswal Aggarwal, and G. "BIOAVAILABILITY **ENHANCDEMENT** OF **POORLY** SOLUBLE DRUGS BY SMEDDS: A REVIEW," J. Drug Deliv. Ther., vol. 3, Jan. 2013, no. 1, doi: 10.22270/jddt.v3i1.360.
- [36] K. S. B, "Self-Eumlsifying Drug Delivery System A Novel Approach for enhancement of Bioavalibility."
- [37] S. Anand, R. Gupta, and P. Sk, "SELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM," vol. 9, 2016.
- [38] P. Patil, P. Joshi, and A. Paradkar, "Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen," *AAPS PharmSciTech*, vol. 5, no. 3, 2004, doi: 10.1208/pt050342.
- [39] P. Jaiswal and G. Aggarwal, "Bioavailability Enhancement of Poorly Soluble Drugs By Smedds: a Review," *J.*

www.jchr.org

- *Drug Deliv. Ther.*, vol. 3, no. 1, 2013, doi: 10.22270/jddt.v3i1.360.
- [40] O. J. Tan, H. L. Loo, G. Thiagarajah, U. D. Palanisamy, and U. Sundralingam, "Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations A Scoping Review," *Phytomedicine*, vol. 90, Sep. 2021, doi: 10.1016/j.phymed.2021.153651.
- [41] "Extraction Technologies for Medicinal and Aromatic Plants."
- [42] K. Yetukuri and P. Sudheer, "APPROACHES TO DEVELOPMENT **SOLID-SELF MICRON EMULSIFYING** DRUG **DELIVERY** SYSTEM: **FORMULATION** TECHNIQUES AND DOSAGE FORMS: A REVIEW," vol. 3, no. 10, pp. 3550-3558, 2012, [Online]. Available: www.ijpsr.com
- [43] M. T. Deshmukh, H. A. Lawale, R. Shete, and R. Solunke, "Review Article A REVIEW ON TRANSDERMAL DRUG DELIVERY SYSTEM," *J Pharm Res*, vol. 7, no. 12, pp. 279–282, 2018, [Online]. Available: http://www.jprinfo.com/
- [44] C. Monton, N. Chankana, S. Leelawat, J. Suksaeree, and T. Songsak, "Optimization of supercritical carbon dioxide fluid extraction of seized cannabis and self-emulsifying drug delivery system for enhancing the dissolution of cannabis extract," *J. Supercrit. Fluids*, vol. 179, Jan. 2022, doi: 10.1016/j.supflu.2021.105423.
- [45] J. D. Friedl *et al.*, "SEDDS-loaded mucoadhesive fiber patches for advanced

- oromucosal delivery of poorly soluble drugs," *J. Control. Release*, vol. 348, pp. 692–705, Aug. 2022, doi: 10.1016/j.jconrel.2022.06.023.
- [46] G. D. Marena *et al.*, "Hydroalcoholic Extract of Myrcia bella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential," *Planta Med.*, vol. 88, no. 5, pp. 405–415, Apr. 2022, doi: 10.1055/a-1323-3622.
- [47] T. V. Vo, Y. Y. Chou, and B. H. Chen, "Preparation of microemulsion from an alkyl polyglycoside surfactant and tea tree oil," *Molecules*, vol. 26, no. 7, Apr. 2021, doi: 10.3390/molecules26071971.
- [48] X. Cao *et al.*, "Improvement of Oral Bioavailability and Anti-Tumor Effect of Zingerone Self-Microemulsion Drug Delivery System," *J. Pharm. Sci.*, vol. 110, no. 7, pp. 2718–2727, Jul. 2021, doi: 10.1016/j.xphs.2021.01.037.
- [49] S. Pal *et al.*, "A butanolic fraction from the standardized stem extract of Cassia occidentalis L delivered by a self-emulsifying drug delivery system protects rats from glucocorticoid-induced osteopenia and muscle atrophy," *Sci. Rep.*, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-019-56853-6.
- [50] J. W. Guo, C. M. Pu, C. Y. Liu, S. L. Lo, and Y. H. Yen, "Curcumin-Loaded Self-Microemulsifying Gel for Enhancing Wound Closure," *Skin Pharmacol. Physiol.*, vol. 33, no. 6, pp. 300–308, Feb. 2021, doi: 10.1159/000512122.
- [51] J. Liu *et al.*, "Enhanced oral bioavailability of Bisdemethoxycurcumin-loaded self-microemulsifying drug delivery system: Formulation design, in

www.jchr.org

- vitro and in vivo evaluation," *Int. J. Pharm.*, vol. 590, Nov. 2020, doi: 10.1016/j.ijpharm.2020.119887.
- [52] L. Chen, X. Lin, X. Xu, L. Wang, H. Teng, and H. Cao, "Anti-inflammatory effect of self-emulsifying delivery system containing Sonchus oleraceus Linn extract on streptozotocin-induced diabetic rats," *Food Chem. Toxicol.*, vol. 135, Jan. 2020, doi: 10.1016/j.fct.2019.110953.
- [53] R. Nazari-Vanani, N. Azarpira, and H. Heli, "Development of self-nanoemulsifying drug delivery systems for oil extracts of Citrus aurantium L. blossoms and Rose damascena and evaluation of anticancer properties," *J. Drug Deliv. Sci. Technol.*, vol. 47, pp. 330–336, Oct. 2018, doi: 10.1016/j.jddst.2018.08.003.
- [54] L. Xu, X. Tang, G. Zhang, L. Yang, and D. Yuan, "Metabolic profile of curcumin self-emulsifying drug delivery system in rats determined by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry," *Biomed. Chromatogr.*, vol. 35, no. 2, Feb. 2021, doi: 10.1002/bmc.4988.
- [55] V. K. Agarwal, G. Amresh, and P. Chandra, "Pharmacodynamic evaluation of self micro-emulsifying formulation of standardized extract of Lagerstroemia speciosa for antidiabetic activity," *J. Ayurveda Integr. Med.*, vol. 9, no. 1, pp. 38–44, Jan. 2018, doi: 10.1016/j.jaim.2017.02.007.
- [56] K. Kheawfu, S. Pikulkaew, T. Rades, A. Müllertz, and S. Okonogi, "Development and characterization of clove oil nanoemulsions and self-microemulsifying

- drug delivery systems," *J. Drug Deliv. Sci. Technol.*, vol. 46, pp. 330–338, Aug. 2018, doi: 10.1016/j.jddst.2018.05.028.
- [57] W. Huang, H. Su, L. Wen, A. Shao, F. Yang, and G. Chen, "Enhanced anticancer effect of Brucea javanica oil by solidified self-microemulsifying drug delivery system," *J. Drug Deliv. Sci. Technol.*, vol. 48, pp. 266–273, Dec. 2018, doi: 10.1016/j.iddst.2018.10.001.
- [58] J. Mandić, A. Zvonar Pobirk, F. Vrečer, and M. Gašperlin, "Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective," *Int. J. Pharm.*, vol. 533, no. 2, pp. 335–345, Nov. 2017, doi: 10.1016/j.ijpharm.2017.05.036.
- [59] A. Gonçalves *et al.*, "Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries," Feb. 05, 2018, *Elsevier B.V.* doi: 10.1016/j.colsurfa.2017.10.076.
- [60] Z. Guo, J. Dong, H. Su, R. Cai, and X. Ma, "Stability and performance study of newly developed emulsion prepared with polymeric rubber emulsifier and using the emulsion for nicotine extraction," *Sep. Purif. Technol.*, vol. 156, pp. 617–624, Dec. 2015, doi: 10.1016/j.seppur.2015.10.057.
- [61] N. Sermkaew, W. Ketjinda, P. Boonme, N. Phadoongsombut, and R. Wiwattanapatapee, "Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata," *Eur. J. Pharm. Sci.*, vol. 50, no. 3–4, pp. 459–466, 2013,

www.jchr.org

- doi: 10.1016/j.ejps.2013.08.006.
- "Enhancement [62] Okonogi, of anti-Zingiber cholinesterase activity of cassumunar essential oil using microemulsion technique," Drug Discov. Ther.. 2012. doi: 10.5582/ddt.2012.v6.5.249.
- [63] "Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique".
- [64] W. Li *et al.*, "Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies," *Int. J. Pharm.*, vol. 420, no. 1, pp. 161–171, Nov. 2011, doi: 10.1016/j.ijpharm.2011.08.024.
- [65] X. Qi, L. Wang, J. Zhu, Z. Hu, and J. Zhang, "Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability," *Int. J. Pharm.*, vol. 409, no. 1–2, pp. 245–251, May 2011, doi: 10.1016/j.ijpharm.2011.02.047.
- [66] C. Agubata, "Self-Emulsifying Formulations: A Pharmaceutical Review," *J. Drug Deliv. Ther.*, vol. 10, no. 3, pp. 231–240, May 2020, doi: 10.22270/jddt.v10i3.3981.
- [67] A. A. Attama and M. O. Nkemnele, "In vitro evaluation of drug release from self micro-emulsifying drug delivery systems using a biodegradable homolipid from Capra hircus," *Int. J. Pharm.*, vol. 304, no. 1–2, pp. 4–10, Nov. 2005, doi: 10.1016/j.ijpharm.2005.08.018.
- [68] P. P. Joy and S. Mathew, "Medicinal Plants Effect of levels and methods of

- potash application on the yield of rice View project," 1998. [Online]. Available: https://www.researchgate.net/publication/ 284679150
- [69] H. Wen, H. Jung, and X. Li, "Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges," *AAPS J.*, vol. 17, no. 6, pp. 1327–1340, 2015, doi: 10.1208/s12248-015-9814-9.
- [70] T. Do Thi *et al.*, "Formulate-ability of ten compounds with different physicochemical profiles in SMEDDS," *Eur. J. Pharm. Sci.*, vol. 38, no. 5, pp. 479–488, Dec. 2009, doi: 10.1016/j.ejps.2009.09.012.
- [71] C. Mobaswar Hossain, M. Gera, and K. Asraf Ali, "CURRENT STATUS AND CHALLENGES OF HERBAL DRUG DEVELOPMENT AND REGULATORY ASPECT: A GLOBAL PERSPECTIVE," vol. 15, p. 2022, 2022, doi: 10.22159/ajpcr.2022v15i12.46134.
- [72] World Health Organization., Quality control methods for medicinal plant materials. World Health Organization, 1998.
- [73] S. Dokania and A. K. Joshi, "Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead," Aug. 18, 2015, *Taylor and Francis Ltd.* doi: 10.3109/10717544.2014.896058.
- [74] M. G. Papich and M. N. Martinez, "Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls," *AAPS J.*, vol. 17, no. 4, pp. 948–964, 2015, doi: 10.1208/s12248-015-9743-7.

www.jchr.org

- [75] P. Uttreja *et al.*, "Self-Emulsifying Drug Delivery Systems (SEDDS): Transition from Liquid to Solid—A Comprehensive Review of Formulation, Characterization, Applications, and Future Trends," Jan. 01, 2025, *Multidisciplinary Digital Publishing Institute (MDPI)*. doi: 10.3390/pharmaceutics17010063.
- [76] A. Rama *et al.*, "Drug delivery to the lymphatic system: The road less travelled," *J. Appl. Pharm. Sci.*, vol. 14, no. 06, pp. 1–10, 2024, doi: 10.7324/japs.2024.180277.
- [77] S. Uppal, K. S. Italiya, D. Chitkara, and A. Mittal, "Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy," Nov. 01, 2018, *Acta Materialia Inc.* doi: 10.1016/j.actbio.2018.09.049.
- [78] B. M. Al-Kandari, M. H. Al-Soraj, and M. A. Hedaya, "Dual Formulation and Interaction Strategies to Enhance the Oral Bioavailability of Paclitaxel," *J. Pharm. Sci.*, vol. 109, no. 11, pp. 3386–3393, Nov. 2020, doi: 10.1016/j.xphs.2020.07.027.
- [79] J. Tokarský, T. Andrýsek, and P. Čapková, "Molecular modeling of gel nanoparticles with cyclosporine a for oral drug delivery," *Int. J. Pharm.*, vol. 410, no. 1–2, pp. 196–205, May 2011, doi: 10.1016/j.ijpharm.2011.03.026.
- [80] R. N. Gursoy and S. Benita, "Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs," *Biomed. Pharmacother.*, vol. 58, no. 3, pp. 173–182, 2004, doi:

- 10.1016/j.biopha.2004.02.001.
- [81] C. J. H. Porter and W. N. Charman, "In vitro assessment of oral lipid based formulations," 2001. [Online]. Available: www.elsevier.com/locate/drugdeliv
- [82]K. Jo et al., "Enhanced intestinal lymphatic absorption of saquinavir through supersaturated selfmicroemulsifying drug delivery systems," Asian J. Pharm. Sci., vol. 15, no. 3, pp. 336-346, May 2020, 10.1016/j.ajps.2018.11.009.
- [83]B. K. Kang *et al.*, "Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs," *Int. J. Pharm.*, vol. 274, no. 1–2, pp. 65–73, Apr. 2004, doi: 10.1016/j.ijpharm.2003.12.028.
- [84] M. Alkhatib, M. H. Alkhatib, and S. S. Al-Merabi, "THE APOPTOTIC EFFECT **OF** THE **MICROEMULSION** FORMULATION OF SIMVASTATIN/ CREMOPHOR EL/ TRANSCUTOL/ CAPTEX355/WATER IN A549 NON-**SMALL CELL** LUNG **CANCER** CELLS," 2014. [Online]. Available: https://www.researchgate.net/publication/ 262345827
- [85] Z. Ćetković, S. Cvijić, and D. Vasiljević, "Formulation and characterization of novel lipid-based drug delivery systems containing polymethacrylate polymers as solid carriers for sustained release of simvastatin," *J. Drug Deliv. Sci. Technol.*, vol. 53, Oct. 2019, doi: 10.1016/j.jddst.2019.101222.
- [86] R. P. Dixit and M. S. Nagarsenker, "Optimized microemulsions and solid

www.jchr.org

- microemulsion systems of simvastatin: Characterization and in vivo evaluation," *J. Pharm. Sci.*, vol. 99, no. 12, pp. 4892–4902, 2010, doi: 10.1002/jps.22208.
- [87] A. Sprunk, C. J. Strachan, and A. Graf, "Rational formulation development and in vitro assessment of SMEDDS for oral delivery of poorly water soluble drugs," *Eur. J. Pharm. Sci.*, vol. 46, no. 5, pp. 508–515, Aug. 2012, doi: 10.1016/j.ejps.2012.04.001.
- [88] M. M. Kamal *et al.*, "Development and characterization of curcumin-loaded solid self-emulsifying drug delivery system (SEDDS) by spray drying using Soluplus® as solid carrier," *Powder Technol.*, vol. 369, pp. 137–145, Jun. 2020, doi: 10.1016/j.powtec.2020.05.023.
- [89] K. Sha, Q. Ma, H. Veroniaina, X. Qi, J. Qin. and Wu. "Formulation Z. optimization of solid selfmicroemulsifying pellets for enhanced oral bioavailability of curcumin," Pharm. Dev. Technol., vol. 26, no. 5, pp. 549doi: 558, 2021. 10.1080/10837450.2021.1899203.
- [90] N. T. Tung *et al.*, "Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin," *Int. J. Pharm.*, vol. 555, pp. 63–76, Jan. 2019, doi: 10.1016/j.ijpharm.2018.11.036.
- [91] A. Nagi, B. Iqbal, S. Kumar, S. Sharma, J. Ali, and S. Baboota, "Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability," *J. Drug Deliv. Sci. Technol.*, vol. 40, pp. 35–44, Aug. 2017, doi:

- 10.1016/j.jddst.2017.05.019.
- [92] W. Wu, Y. Wang, and L. Que, "Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system," *Eur. J. Pharm. Biopharm.*, vol. 63, no. 3, pp. 288–294, Jul. 2006, doi: 10.1016/j.ejpb.2005.12.005.
- [93] S. Pund, A. Joshi, and V. Patravale, "Improving bioavailability of nutraceuticals by nanoemulsification," in *Nutraceuticals*, Elsevier, 2016, pp. 481–534. doi: 10.1016/B978-0-12-804305-9.00013-0.
- [94] N. Chouhan, V. Mittal, D. Kaushik, A. Khatkar, and M. Raina, "Self Emulsifying Drug Delivery System (SEDDS) for Phytoconstituents: A Review," *Curr. Drug Deliv.*, vol. 12, no. 2, pp. 244–253, 2014, doi: 10.2174/1567201811666141021142606.
- [95] Y. Liu and N. Feng, "Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM)," May 30, 2015, *Elsevier B.V.* doi: 10.1016/j.cis.2015.04.006.
- [96] C. Y. Wu and L. Z. Benet, "Predicting drug disposition via application of BCS: Transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system," *Pharm. Res.*, vol. 22, no. 1, pp. 11–23, 2005, doi: 10.1007/s11095-004-9004-4.
- [97] R. Holm, M. Kuentz, A. R. Ilie-Spiridon, and B. T. Griffin, "Lipid based formulations as supersaturating oral delivery systems: From current to future industrial applications," *Eur. J. Pharm.*

www.jchr.org

- Sci., vol. 189, Oct. 2023, doi: 10.1016/j.ejps.2023.106556.
- [98] Preeti *et al.*, "Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review," *Saudi Pharm. J.*, vol. 31, no. 12, p. 101870, 2023, doi: 10.1016/j.jsps.2023.101870.
- [99] R. S. Kalhapure and K. G. Akamanchi, "Oleic acid based heterolipid synthesis, characterization and application in self-microemulsifying drug delivery system," *Int. J. Pharm.*, vol. 425, no. 1–2, pp. 9–18, Apr. 2012, doi: 10.1016/j.ijpharm.2012.01.004.