www.jchr.org JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

Antimicrobial Activity of Multi Drug Resistance Escherichia Coli Causing Urinary Tract Infection in Tertiary Care Hospital from Central India.

Mr. Pankaj Vishwakarma,¹ Dr. Ramanath Karicheri²

1. Mr. Pankaj Vishwakarma, PhD Scholar, Department of Microbiology, Index Medical College, Hospital & Research Centre, Malwanchal University, Indore (M.P)

2. Dr. Ramanath Karicheri, Associate Professor, Department of Microbiology, Index Medical College, Hospital & Research Centre, Indore (M.P.)

	(Receive	ed: 07 January 2024 🛛 🛛 🤻	Revised: 12 February 2024	Accepted: 06 March 2024)
KEYWORD	S	ABSTRACT: Background: Escherichia co	bli can cause disease and is resp	onsible for most community-acquired
Extended- spectrum lactamases, AmpC lactamases,	beta- beta-	(as opposed to hospital-acquantimicrobial resistance, p enzymes, such as AmpC (ESBLs), have been reported also associated with multidr	uired) urinary tract infections (U) articularly against extended-spe beta-lactamases (ACBLs) and d in pathogenic bacteria, includin ug resistance.	[Is]. Treatment can be complicated by ctrum Cephalosporin's. Increasingly,extended-spectrum beta-lactamasesg E. coli. Resistance to beta-lactams is
Urinary infections	tract	Aim: The present study w patients caused by ESBL an	as conducted to evaluate the ro d AmpC producing E. coli isolate	ble of antimicrobial activity for UTI
		Materials and Methods: Thi o f Microbiology, Index Me	s observational hospital-based st dical College, Hospital and Resea	udy was conducted in the Department arch Centre Indore MP,
		India. The study population infection were included. At using Kirby Bauer disk diffe	n included 1000 of all age. Clini ntimicrobial susceptibility of iso usion method according to CLSI §	cally suspected cases of urinary tract lates was tested for uropathogens by guide lines.
		Results: Out of (83.4%) Es 16 (45.7%) was the major A	cherichia coli sensitivity 19 (54. mpC producer Escherichia coli.	3%) were major ESBL producer. And
		Conclusion: In c o n c l u s isolates of ESBL product cephalosporins and other β - challenge to the current arm	i o n, t h e p r e s e n t results sug ing E. coli to commonly use -lactams. This trend of rise in iso amentarium for the	ggest that the increasing drug-resistant d antibiotics like fluoroquinolones, plation of MDR uropathogens poses a
		treatment of UTIs.		

INTRODUCTION

Escherichia coli is a commensal microorganism found both inside and outside the mammalian large intestine and is commonly used as an indicator of fecal contamination.[1]

E. coli can cause disease and is responsible for most

community-acquired (as opposed to hospital-acquired) urinary tract infections (UTIs).[2]

Treatment can be complicated by antimicrobial resistance.[3] particularly against extended-spectrum cephalosporins.[4]

Increasingly, enzymes, such as AmpC beta-lactamases

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

(ACBLs) and extended-spectrum beta- lactamases (ESBLs), have been reported in pathogenic bacteria, including E. coli. Resistance to beta-lactams is also associated with multidrug resistance.[5]

MATERIALS AND METHODS

This observational hospital-based study was conducted in the Department of Microbiology, Index Medical College, Hospital and Research Centre Indore MP, India.

The study population included 1000 of all age group and either sex whom was sample was received in microbiology laboratory. Clinically suspected cases of urinary tract were included in the study.

The samples from patients with ongoing antibiotic, repeat samples of the same patient and samples that are not labelled properly and are contaminated were excluded from the study.

Sample was processing semi quantitative culture of sample was done within two hours of receipt. Using a 4 mm calibrated nichrome loop, a 0.001 mL loopful of urine was inoculated on Cystine- Lactose Electrolyte Deficient (CLED) agar.

The inoculated plates were then aerobically incubated for 18- 24 hours at 37°C. Growth on CLED was assessed for significant bacteriuria with colonyforming units \geq 105/mL of pure growth of single isolates.[6]

The isolated organisms *E. coli* was confirmed by using standard biochemical tests. Vitek-2 Compact (BioMerieux, France) was employed for identification of the isolates and their Antimicrobial Susceptibility

Testing (AST).

The ESBL and AmpC isolates were verified by the CLSI 2019 guidelines using the Advanced Expert System of VITEK-2 automated system; based on analysis of MIC patterns.[7]

Antimicrobial susceptibility of isolates was tested for uropathogens by using Kirby Bauer disk diffusion method according to Clinical Laboratory Standards Institute (CLSI) guide lines.

A standard inoculum adjusted to 0.5 McFarland is swabbed on to Muller-Hinton agar; antibiotic disc is dispensed after drying the plate for 3-5 min and incubated at 37° C for 18- 24 hours.

The CLSI advocates use of cefotaxime (30 μ g) or ceftazidime (30 μ g) disks with or without clavulanate (10 μ g) for phenotypic confirmation of the presence of ESBLs in *Escherichia coli*.

STATISTICAL ANASYSIS

Microsoft Excel was used in creating the database and producing graphs, while the data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 23.0 for Windows.

RESULT

From the 1000 non-duplicate samples were received in the Department of Microbiology for culture and antibiotic sensitivity. Out of 1000 cases, majority (69.3%) of patients were in age group 20-49 years followed by 50-80 years that constituted 18.3% of study population.12.1% were \leq 19 years and least 0.3% were >80 years of age [Table-1].

 Table 1: Classification of studied patients on the basis of age group

Age group	Frequency(n)	Percentage (%)	
≤19	121	12.1	
20-49	693	69.3	
50-80	183	18.3	
>80	3	0.3	
Total	1000	100.0	

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

In present study, out of 1000 studied samples, in 738 (73.8%) cases organism were unidentified.Escherichia coli was the highest scorer and isolated in 162 (16.2%) of cases.

Acinetobacter 25 (2.5%), YLC 7 (0.7%), YLC resembling Candida 20 (2.0%), Pseudomonas

Table 2: Distribution of isolated Uropathogens in the study

aeruginosa 20 (2.0%), Klebsiella pneumonia 17 (1.7%) were major isolates.

Some other isolates included Citrobacter freundii 3 (0.3%), Proteus mirabilis 3(0.3%), Proteus vulgaris 3 (0.3%), Klebsiella oxytoca 1 (0.1%) and Citrobacter koseri 1 (0.1%) [Table-2].

Isolated organism	Frequency(n=262)	Percentage (%)	
Acinetobacter	25	9.5	
Citrobacter freundii	3	1.1	
Citrobacter koseri	1	0.4	
Escherichia coli	162	61.8	
Klebsiella oxytoca	1	0.4	
Klebsiella pneumoniae	17	6.5	
Proteus mirabilis	3	1.1	
Proteus vulgaris	3	1.1	
Pseudomonas aeruginosa	20	7.6	
YLC	7	2.7	
YLC resembling Candida	20	7.6	

In this table we noted that the ESBL producing in 54.3% *E. coli* culture and AmpCproducing in 45.7% *E. coli* culture [Table-3].

Table 3: Shows the uropathies that were AmpC producers and ESBL producers

MBL Producer	Escherichia coli			
	Frequency (n)	Percentage (%)		
ESBL	19	54.3		
AmpC	16	45.7		

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

Total						35	100.0
Below	table	highlights	the	drug	sensitivity	of	sensitive against <i>E coli</i> . While ampicillin (78.4%),

Below table highlights the drug sensitivity of various drugs on isolated uropathogens. Number of drug like piperacillin/tazobactam (94.4%), cefoperazone-sulbactam (92.6%),

amikacin (87.7%), polymyxin-B (98.1%), colistin (88.9%), imipenem (84.0%), ertapenem (85.2%), meropenem (97.5%) and nitrofurantoin (95.7%)

norfloxacin (66.0%), ciprofloxacin (61.1%), ceftriaxone (58.0%) and ceftazidime (56.8%) are the most resistance drug in UTI infection organism *E. coli*. Few urine sample cases were also seen intermediate stage in this condition there was more

exposures to get result [Table- 4].

Table 4: Percentage distribution of drug sensitivity by pathogens *Escherichia coli*.

Antibiotic Drug	Sensitive (%)	Intermediate (%)	Resistance (%)
Ampicillin	35 (21.6)	0 (0.0)	127 (78.4)
Ceftriaxone	68 (42.0)	0 (0.0)	94 (58.0)
Ceftazidime	70 (43.2)	0 (0.0)	92 (56.8)
Piperacillin/Tazobactam	153 (94.4)	0 (0.0)	9 (5.6)
Cefoperazone-Sulbactam	150 (92.6)	4 (2.5)	8 (4.9)
Ciprofloxacin	59 (36.4)	4 (2.5)	99 (61.1)
Norfloxacin	52 (32.1)	3 (1.9)	107 (66.0)
Gentamicin	114 (70.4)	1 (0.6)	47 (29.0)
Amikacin	142 (87.7)	5 (3.1)	15 (9.3)
Polymyxin-B	159 (98.1)	1 (0.6)	2 (1.2)
Colistin	144 (88.9)	16 (9.9)	2 (1.2)
Imipenem	136 (84.0)	2 (1.2)	24 (14.8)

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

Ertapenem	138 (85.2)	8 (4.9)	16 (9.9)
Meropenem	158 (97.5)	1 (0.6)	3 (1.9)
Tigecycline	128 (79.0)	27 (16.7)	7 (4.3)

DISCUSSION

Urinary tract infection (UTI) is one of the most common infectious diseases diagnosed in outpatients, with a high rate of annual global incidence.

The incidence of UTI is more common among boys until the age of 12 months; however, the pooled prevalence rate of febrile UTI in females is about 3fold of circumcised males and UTI occurrence increases among uncircumcised male infants.

Escherichia coli (E coli) is by far the most commonly isolated organism in pediatric UTI with prevalence ranging from 80% to 90% followed by others such as Enterococcus species (spp.), Enterobacter spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus spp. [8]

Antibiotic sensitivity and resistance pattern vary over time and places. High resistance to antimicrobials like ampicillin, co-trimoxazole and nalidixic acid and a possible reason could be these antibiotics were in general use for a long period.[9]

We have opted for the cross-sectional study as we have to check the prevalence of the identified organism's concomitant with urinary tract infection in clinically suspected patients attending the in- patient and out-patient department of tertiary care unit. A similar study was performed by **Gupta K etal.** [10] to analyze the antimicrobial resistance among uropathogens. **Raghuvanshi BR et al.** [9]

has opted for the cross-sectional study to analyze the patients while **Pouladfar G et al. [8]** also studied the cross-sectional study to analyze the antibiotic susceptibility pattern of uropathogens among children. Other than the studies as mentioned above mostly were the case reports in whichone or two patients were analyzed.

We haven't gone for case and control study because it

was not feasible for us to ask a healthier personwithout any concrete reason for taking the sample. This implies that observational study was ideal for performing in this particular topic.

In conventional Clinical Laboratory Services processing, urine samples were cultured in five percent blood agar and Mac Conkey's agar. Similar tools were used by **Raghuvanshi BR et al. Sabharwal ER [9&11].** also used Mac Conkey's agar and antibiotic sensitivity testing was done by the Kirby Bauer disc diffusion method according to the CLSI guidelines. Also, **Pouladfar G et al. [8]** reported that Samples were cultured on blood agar or MacConkey agar by using a standard. calibrated

loop. This implies that Mac Conkey's agar was used as a gold standard for urine sample culture process in the present as well as in previous studies **Betty AF et al.** [12] used the bacterial identification by colony morphology, Gram staining, and standard biochemical tests. Antimicrobial susceptibility test was performed by Kirby-Bauer disc diffusion technique. **Mathew AW et al** [13]. different antimicrobial panels were used for different groups of microorganisms and second line antimicrobials were used only when necessary, following the Clinical and Laboratory Standards Institute (CLSI) guidelines.

The proportion of resistant organisms was calculated by dividing the number of isolates that were resistant to each antimicrobial agent by the number of organisms that were tested against that antimicrobial agent.

The primary outcome of interest was the proportion of organisms that were resistant to each antimicrobial agent nationally and within geographic regions for patients. The significance of differences in resistance according to geographic region or age was determined by means of the x^2 testfor independence.[14] Because

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

of the considerable number of isolates in the database, most differences in the prevalence of resistance that we tested were significant (P <0.05), even if they varied by only 2%. The resulting sample size was 1000 cases as 85 cases were found to be unsuitable for the study or were dropouts. The clinical features of these cases were reviewed, and statistical analysis was performed.

Table 5: Sample Size Comparison

Study	Year	Samp le Size	Inference
Seifu WD et al ¹⁵	2018	384	Urinary tract infection was highly prevalent in the study area and all uropathogens isolated developed a resistance against mostly used antibiotics.
			The efficacy of the third generation of the cephalosporins was reduced because of the high rate of production of ESBL and drug resistance. These results inform the physician as to which antibiotics are appropriate to prescribe for the patient, as well as urine culture reports and following the patient's clinical response so that high antimicrobial resistance is not developed at the community level.
<u>Poulad</u> far G et al8	2017	202	
<u>Sabhar</u> wal ER et al11	2012	250	therapy in cases of suspected UTI.
Prakas			The prevalence rate of uncomplicated UTI in general practice is high among young females in reproductive age groups. <i>E. coli</i> was found to be the most a common cause of UTI in all age groups. These isolates show resistance to commonly used antibiotics a n d s u s c e p t i b l e o n l y to i n j e c t a b l e antibiotics.
am AKC et al ¹⁷	2012	200	

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

LIMITAITON OF THE STUDY

- □ Generalization of the study result to all of the patients with UTI is not free from bias.
- □ The study did not provide any information about the causality
- □ The study did not provide any information about the time course of different variables

CONCLUSION

- □ Urinary tract infection is the most common problem throughout the world, particularly in developing countries.
- UTI mainly occurred in the middle-aged persons
- □ Females were more likely to be affected than the males
- E. coli is the most common microorganism causing UTI. Antimicrobial susceptibility pattern varies in different regions and according to time
- □ The association of isolated pathogens with the gender was found to be statistically insignificant (p>0.05)
- □ The highest sensitivity was Escherichia coli (83.4%)
- □ Escherichia coli 19 (54.3%) were major ESBL producer
- □ Escherichia coli 16(45.7%) was the major AmpC producer

REFERENCE

- 1. Edberg SC, Rice EW, Karlin RJ, Allen MJ. 2000. Escherichia coli: the best biological drinking water indicator for public health protection. J Appl Microbiol 88:106S–116S.
- Schito GC, Naber KG, Botto H, Palou J, Mazzei T, Gualco L, Marchese A. 2009. The ARESC study: an international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int J

Antimicrob Agents 34:407–413.

- 3. Toombs-Ruane LJ, Benschop J, Burgess S, Priest P, Murdoch DR, French NP. 2017.
- Multidrug resistant Enterobacteriaceae in New Zealand: a current perspective. N Z Vet J 65:62-70.
- LivermoreDM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern-Zdanowicz I, Luzzaro F, Poirel L, Woodford N. 2007. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174.
- 6. AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012.
- Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281.
- Infections of the Urinary Tract. In: Tille P,editors.Bailey & Scott's Diagnostic Microbiology.13th ed. Missouri: Elsevier; 2014. p. 919-29.
- Sahu M, Saseedharan S, Bhalekar P. Invitro fosfomycin susceptibility against carbapenemresistant or extended-spectrum beta-lactamaseproducing gramnegative fosfomycin-naive uropathogens: An alluring option or an illusion. Indian J Med Microbiol. 2017;35:437-38.
- Pouladfar G, Basiratnia M, Anvarinejad M, Abbasi P, Amirmoezi F, Zare S. The antibiotic susceptibility patterns of uropathogens among children with urinary tract infection in Shiraz.Pouladfar et al. Medicine. 2017;96:37
- BR1, Shrestha D2, Chaudhary M3, Karki BMS4, Dhakal AK. Bacteriology of urinary tract infection in paediatric patients at KIST medical college teaching hospital. Journal of Kathmandu medical college 2014;3(7):21-24.
- K, Sahm DF, Mayfield D, and Stamm WE. Antimicrobial Resistance Among Uropathogensthat Cause Community-Acquired Urinary Tract Infections in Women: A Nationwide Analysis. Resistance in Community-Acquired UTI • CID. 2001;33:89.
- 13. Sabharwal ER. Antibiotic Susceptibility

www.jchr.org

JCHR (2024) 14(2), 3199-3206 | ISSN:2251-6727

Patterns of Uropathogens in Obstetric Patients. NAm J Med Sci. 2012 Jul; 4(7):316– 319.

- Betty AF, Daniel FS, Alice SW. Overview of bacterial identification and strategies. In:Bailey and Scott's Diagnostic Microbiology. 12th ed. Philadelphia: Mosby; 2007;216-47
- AW, Franklin RC, William AC, Michael. ND, George ME, David WH, et al Performance standards for antimicrobial disc susceptibility test, Approved standard in Clinical and Laboratory Standards Institute (CLSI). M2-A9. 9th ed. Pennsylvania: Wayne;2006. p. 26.
- Rosner B. Fundamentals of biostatistics. 4th ed. Belmont, California: Wadsworth Publishing, 1995:394.
- Seifu WD and Gebissa AD. Prevalence and antibiotic susceptibility of Uropathogens from cases of urinary tract infections (UTI) in Shashemene referral hospital, Ethiopia. Seifu and Gebissa BMC Infectious Diseases. 2018; 18:30
- Singh RK, Bijoylakshmi D, Mallick RL and Kafle TK. Prevalence of antibiotic sensitivity pattern of uropathogens in patients of different age-groups from western region of Nepal.International Journal of Medical Research & Health Sciences. 2016;5: 9:1-7
- Prakasam AKC, Kumar KGD, Vijayan M. A Cross Sectional Study on Distribution of Urinary Tract Infection and Their Antibiotic Utilisation Pattern in Kerala. International Journal of PharmTech Research CODEN (USA): Vol.4(3):1309-1316,