
Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2024) 14(2), 2245-2256 | ISSN:2251-6727 

 
 

 

2245 

Examining and Applying Network-Based Approaches, Integrating 

Unsupervised and Supervised Methods, For the Analysis of Protein-

Protein Interaction Networks 
 

1Dasaradha Ramayya Lanka, 2Dr. Pratap Singh Patwal 
1Research Scholar, Department of Technology and Computer Science, The Glocal University, Saharanpur, Uttar 

Pradesh, India 
2Professor, Department of Technology and Computer Science, The Glocal University, Saharanpur, Uttar Pradesh, India 
 

(Received: 07 January 2024         Revised: 12 February 2024              Accepted: 06 March 2024) 

KEYWORDS 

Network-

based 

approaches; 

Protein-

protein 

interaction 

networks; 

Unsupervise

d methods; 

Supervised 

methods; 

Analysis 

 

ABSTRACT:  

 

Protein-protein interaction networks (PPINs) play a pivotal role in understanding the complex mechanisms 

underlying cellular processes. In recent years, network-based approaches integrating unsupervised and 

supervised methods have emerged as powerful tools for analysing PPINs. This paper delves into the 

examination and application of such methodologies to unravel the intricate relationships within PPINs. 

Unsupervised methods, such as clustering algorithms, facilitate the identification of functional modules or 

communities within PPINs based on topological properties or expression profiles. These modules often 

correspond to biologically significant pathways or complexes, shedding light on the organization and 

functionality of cellular systems. However, unsupervised methods may overlook subtle but relevant interactions 

within the network. 

To address this limitation, supervised methods are integrated to enhance the analysis of PPINs. 

Machine learning algorithms, trained on known interactions and network features, can predict novel protein 

associations with high accuracy. By leveraging information from various data sources, including gene 

expression data and protein sequence similarities, supervised methods provide comprehensive insights into 

PPINs, aiding in the discovery of novel protein interactions and their functional implications. Furthermore, the 

integration of unsupervised and supervised approaches allows for a more holistic understanding of PPIN 

dynamics. By combining the strengths of both methodologies, researchers can identify not only densely 

connected protein modules but also predict potential interactions between proteins with disparate topological 

properties. 
 

 

1. Introduction 

The exploration of protein-protein interaction networks 

(PPINs) has become a cornerstone in deciphering the 

intricate machinery of cellular processes. PPINs, 

composed of a vast array of molecular interactions, 

offer invaluable insights into the functional organization 

of biological systems. As our understanding of PPINs 

evolves, so too does the need for sophisticated 

analytical methodologies capable of elucidating their 

complexities. In response to this demand, network-

based approaches integrating both unsupervised and 

supervised methods have emerged as indispensable 

tools for unraveling the hidden layers of PPIN dynamics 

(Alquran et al., 2023). 

Network-based approaches leverage the principles of 

graph theory to represent PPINs as interconnected 

nodes and edges, where nodes represent proteins and 

edges denote their interactions. By employing this 

network framework, researchers can unveil the 

hierarchical organization and functional modules 

inherent within PPINs. However, the sheer scale and 

complexity of PPINs present significant challenges for 

traditional analytical techniques (Hu et al., 2022). 

To address these challenges, the integration of 

unsupervised and supervised methods has garnered 

considerable attention. Unsupervised methods, such as 
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clustering algorithms, enable the identification of 

densely interconnected protein clusters or modules 

without the need for prior knowledge. These modules 

often correspond to functional units within the cellular 

machinery, providing crucial insights into protein co-

regulation and pathway organization (Murad et al., 

2023). 

Conversely, supervised methods harness the power of 

machine learning algorithms to predict protein 

interactions based on known associations and network 

features. By training on annotated datasets, supervised 

methods can extrapolate from existing knowledge to 

uncover novel protein associations, thereby expanding 

our understanding of PPIN architecture and function 

(Yu et al., 2021). 

This paper aims to delve into the examination and 

application of network-based approaches that integrate 

both unsupervised and supervised methods for the 

analysis of PPINs. Through a comprehensive review of 

existing methodologies and case studies, we elucidate 

the synergistic benefits of combining these analytical 

strategies. By embracing a multidimensional approach, 

we strive to unlock the full potential of PPIN analysis, 

paving the way for novel discoveries and deeper 

insights into cellular biology (Zhou et al., 2022). 

The analysis of protein-protein interaction networks 

(PPINs) has undergone significant advancements with 

the advent of network-based approaches integrating 

unsupervised and supervised methods. Various studies 

have highlighted the utility of these methodologies in 

deciphering the complex architecture and functional 

implications of PPINs. 

Unsupervised methods, such as clustering algorithms, 

have been extensively employed to identify functional 

modules or communities within PPINs. For instance, 

Guimera and Amaral (2015) applied modularity-based 

clustering to uncover functional modules in the yeast 

PPIN, revealing highly interconnected protein 

complexes associated with specific biological 

processes. Similarly, Enright et al. (2012) utilized 

hierarchical clustering to identify protein complexes in 

the human PPIN, shedding light on the modular 

organization of cellular functions (Wei et al., 2021). 

Supervised methods, particularly machine learning 

algorithms, have also been instrumental in predicting 

protein interactions and unraveling the functional 

associations within PPINs. For instance, Qi et al. (2016) 

employed support vector machines (SVMs) to predict 

PPIs in yeast, achieving high prediction accuracy by 

integrating various genomic and proteomic features. 

Additionally, Lin et al. (2019) utilized a random forest-

based approach to predict PPIs in Arabidopsis thaliana, 

highlighting the effectiveness of ensemble learning 

methods in capturing complex interaction patterns 

(Albu et al., 2022). 

The integration of unsupervised and supervised 

methods offers a synergistic approach to PPIN analysis, 

combining the strengths of both methodologies. For 

example, Zhou et al. (2019) proposed a hybrid 

framework that integrates clustering and classification 

algorithms to identify functional modules and predict 

novel interactions in PPINs, demonstrating improved 

performance compared to individual methods (Sun et 

al., 2017). 

 

2. METHODOLOGY 

Modified Schlicker’s semantic similarity measure 

(ModSchlicker) 

 

In this section, we delve deeper into the ModSchlicker 

proposal and its implications. Previously, in Section 

3.2.3, we demonstrated how shallow annotation impacts 

the Gene Ontology (GO) similarity measure. Notably, 

the annotation probability (p(t)) for a GO term (t) can 

range from 0 to 1, affecting various information content 

(IC) value formulations (Jamasb et al., 2021). 

For IC models capable of computing the factor (1−p(t)), 

such as Resnik IC, the annotation probability directly 

influences the IC value, enabling straightforward 

calculation of (1 − p(t)). Conversely, annotation-based 

Resnik IC and several graph topology-based IC models 

lack direct calculation of the probability p(t) for 

computing the co-factor (Tran et al., 2023). 

Within ModSchlicker, we successfully calculate the 

ModSchlicker coefficient (µ), simulating the behavior 

of the co-factor akin to Schlicker's measure. The 

coefficient's larger values for generic terms result in 

lesser contribution to similarity, while specific terms 

contribute more (Kotlyar et al., 2017). 

Next, we elucidate formulas for computing µ for 

various integrated circuit models. In the Nuno IC 

Model, µNuno(t) ∈ [0, 1] assigns higher values to 

generic terms due to their numerous descendant nodes 

in the GO graph, diminishing their contribution to 

similarity (Taha et al., 2023). 
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For the David Model, the coefficient calculation 

involves modifying lower values for general terms due 

to their increased descendant leaves, while vice versa 

for specific terms. Similarly, the equation for µZhou in 

the Zhou IC Model comprises two parts, generating 

lower values for certain terms based on their depth and 

normalized depth fraction (Zhang et al., 2017). 

In the Meng IC model, the coefficient combines 

fractions representing normalized depth and inverse 

sum of descendant terms' depth, resulting in minimal 

similarity value change for generic terms. Lastly, µ 

Yuan follows a similar pattern, with greater increase for 

generic words compared to specific terms (Sarkar et al., 

2019). 

The Yuan IC model, reliant on the normalized depth 

fraction (1−f depth) and f leaves, assigns higher values 

to broader terms and vice versa. These fractions 

combine to form the Yuan IC model, denoted by the 

total. To maintain µYuan within the range of [0,1], 

findings are divided by two since the maximum value of 

any fraction is 1. ModSchlicker is then written using 

previously discussed coefficients (Khandelwal et al., 

2022). 

Various ICs, including David, Nuno, Zhou, Yuan, or 

Meng, are denoted by the symbol µi. The computational 

framework for identifying illness gene signatures using 

GO similarity scores will be discussed in the subsequent 

subsection. In section, the efficiency of the proposed 

method in determining GO similarity degrees will be 

evaluated (Lee et al., 2023). 

This section introduces a novel framework proposed for 

identifying robust signatures from multi-omics data 

comprising gene expression and methylation profiles, 

alongside the GO similarity score. The aim is to 

enhance the technique for identifying illness signatures 

(Li et al., 2022). 

 

STATISTICAL ANALYSIS – PRELIMINARY 

New measure: modified Schlicker’s semantic 

similarity measure (ModSchlicker) 

Now, we will go into more depth about the 

ModSchlicker proposal that has been presented. Our 

demonstration of the impact of shallow annotation on 

the GO similarity measure was presented in the section 

that came before this one. It is really interesting to note 

that the value of the p(t) (annotation probability of a GO 

word t) may vary anywhere from 0 to 1. For those IC 

value formulations that are capable of producing the 

value of factor (1−p(t)) within the range, it will be 

convenient or advantageous. In the case of Resnik IC, 

for instance, the IC value is determined by the 

annotation probability. It is possible to directly calculate 

the factor (1 − p(t)) by using the annotation probability 

as a starting point. When we talk about the generic 

term, we indicate that the value of p(t) is rather high. As 

a result, the multiplication with the aforementioned 

factor adds a relatively little value, and the opposite is 

true for the particular term (Lei et al., 2018).  

In the case of the annotation-based Resnik IC, we are 

unable to directly calculate the value of the probability 

p(t) of a term for the purpose of computing the co-

factor. This is the case for a number of graph topology-

based IC models, including Zhou, Nuno, David, Meng, 

and Yuan. Within the framework of ModSchlicker, we 

have successfully calculated the factor known as the 

ModSchlicker coefficient µ. This factor serves to 

replicate the behavior of the co-factor in the same 

manner as Schlicker's measure. The ModSchlicker 

coefficient value of generic words is larger, and as a 

result, they will contribute less to the similarity value; 

on the other hand, the contribution will be lower for 

particular phrases. In coming paragraphs, we will 

explain the equations that are used to compute the µ for 

a variety of integrated circuit models (Chakraborty et 

al., 2021).  

Within the framework of ModSchlicker, we have 

successfully calculated the coefficient µ, which serves 

as a simulation of the factor p(t) as it is found in 

Schlicker's measure. The value of the coefficient is 

larger for the general words, and it contributes less to 

the similarity value; on the other hand, the contribution 

will be lower for the particular terms. In the following 

paragraphs, we will explore the formulas that have been 

presented for determining the µi for a variety of graph 

topology-based integrated circuit models. In regard to 

the Nuno IC Model (Song et al., 2022) 

 

 
 

Here, µNuno(t) ∈ [0, 1] will produce bigger value for 

the generic term. Because the generic term has a large 

number of descendant nodes in the GO graph, hence, 

will do less contribution to the similarity value and vice 

versa for the specific term. For David Model, we 
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calculate the value of the coefficient as (Du et al., 

2016): 

 

 
As the number of leaves rises for the general term, the 

anti-log of David IC model itself has the feature similar 

to that of the component p, which causes the fraction 

numerator to become heavy. As a result, the lower value 

is modified by a factor of one and a half David for the 

general word, and vice versa. The ModSchlicker 

coefficient (µ) for the Zhou IC Model may be stated in 

the following manner using the following formula 

(Cheng et al., 2018): 

 

 
 

There are two parts to the equation of µZhou that was 

shown before. For certain phrases, the first one 

generates values that are much lower. Due to the fact 

that it has a greater depth, the second part, which is the 

normalized depth fraction reduced from one, likewise 

generates lower values for certain words. On account of 

this, the greater value is modified in terms of the 

similarity value for certain phrases, and vice versa. 

According to the Meng IC model, the coefficient has 

the following value (Zhang et al., 2018): 

 

 
 

In the equation shown above, the explanation of the first 

fraction representing the normalized depth is 

comparable to the symbol µZhou. The inverse sum of 

the depth of descendant terms is taken into 

consideration in the second fraction, which results in an 

increase that is greater for generic words than for 

particular terms. Therefore, the combination of two 

fractions results in a tiny change in the similarity value 

of a generic word, and vice versa. µ Yuan has been 

expressed in the following manner (Zhang et al., 2023): 

 

 
According to the Yuan IC model, which is dependent 

on the normalized depth fraction (1−f depth) in 

conjunction with f leaves, it creates a higher value for a 

more broad term and vice versa at the same time. Two 

fractions are added together to form the Yuan IC model, 

which is represented by this total. Due to the fact that 

the highest possible value of any fraction is 1, we have 

divided the findings by two in order to maintain the 

value of µYuan within the range of [0,1]. Last but not 

least, we write the ModSchlicker using the coefficients 

that were discussed before as follows (Wang et al., 

2017): 

 

 
 

A number of different ICs, such as David, Nuno, Zhou, 

Yuan, or Meng, are represented by the symbol µi. An 

examination of the computational framework for 

identifying the gene signature of illnesses via the 

utilization of GO similarity score is going to be 

presented in the next subsection. In the next section, we 

will assess the efficiency of the suggested method for 

determining the degree of GO similarity technique for 

the identification of illness signatures that has been 

proposed. The purpose of this section is to provide a 

novel framework that we propose for the purpose of 

identifying stronger signatures from multi-omics data 

that includes gene expression and methylation profiles 

in addition to the GO similarity score (Alquran et al., 

2023). 

 

Preliminary statistical analysis 

A dataset that includes both the DNA 

methylation profile and the gene expression profile has 

been compiled by our team. After that, we chose the 

samples and genes that were shared by both sets of data 

(the common samples and genes). For the purpose of 

translating the values that have been acquired on 

different scales to a single scale, normalization of the 

dataset is rather crucial. The zero-mean normalization, 

which can be expressed as x 0 ij = (xij − µ)/σ, has been 

an approach that we have used. In this context, the 

symbols µ and σ are used to denote the mean and 

standard deviation of the methylation or expression 

profile of the i-th gene prior to the application of the 

normalization scheme, respectively. The values of the i-

th gene (feature) throughout the j-th sample before and 

after normalization are denoted by the variables xij and 
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x 0 ij, respectively, in the equation that was presented 

before. Both the normalized methylation and the 

normalized expression scores are represented by the 

symbols NRme(i, j) and NRex(i, j), respectively, for the 

i-th gene across the j-th sample (Hu et al, 2022). 

Utilization of DNA methylation patterns in conjunction 

with gene expression profiles Both the normalized 

methylation scores and the expression scores have been 

integrated into a single score by the use of the INT con 

distance metric, where the computation is dependent 

upon the inverse relationship between the two values. 

Following are the methods that are used to assess INT 

cons (Albu et al., 2012): 

 

 
where |.| is the absolute value. 

 

Statistically significant feature (Gene) identification 

Thereafter, for identifying distinctively expressed and 

methylated (DEM) genes, CoMEx score along with p-

value is computed for every gene symbolized as i (1 <= 

i <= n) under the two groups of samples (viz., 

experimental group of samples denoted as ‘grp1’ and 

control group of samples denoted as ‘grp2’) on the 

resultant INT con(i, :) (Jamasb et al., 2011). 

 

 
Figure: Flowchart of the proposed method of gene 

signature discovery for multi-omics data having 

gene expression and DNA methylation values using 

ModSchlicker 

Next, the genes having p-value less than or equal to 

0.05, are considered as DEM genes and used for further 

analysis, whereas the rest of the genes are discarded 

from the analysis. CoMEx score is defined as follows 

(Sun et al., 2017). 

 

 
 

and ε = 1.4826∗MAD(1<=i<=n){stdi}, where 

n and m are the total number of genes and total number 

of samples, respectively; m1 and m2 denote the number 

of samples in grp1 and grp2, respectively; vgrp1(i) and 

vgrp2(i) refer to the variance of group 1 and group 2 

samples respectively of gene (Kotlyar et al., 2017) 

 

 
 

where, dof symbolizes the degree of freedom 

of the test that is estimated as dof = (m1 +m2 −2). By 

using the CoMEx statistical approach, which is a 

differential expression analysis method, it is possible to 

compare the levels of expression and methylation across 

two separate sets of samples. Particularly noteworthy is 

the fact that these two groups might be anything, such 

as cancer and normal sample groups, two distinct 

malignancies, two subtypes of the same cancer, or any 

number of other possibilities (Tran et al., 2013). 

 

UTILIZING GO-BASED SIMILARITY 

MEASURES 

We calculated GO similarity values among DEM genes 

using the ModSchlicker similarity measure, 

corresponding to each of the graph topology-based IC 

values discussed in Annotated GO word sets, 

encompassing various biological processes, molecular 

activities, and cellular locations, were utilized to 

compute gene pair GO similarity. This calculation 

employed a standardized approach, either BMA or 
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MAX, detailed, considering the entire spectrum of GO 

keywords to determine similarity between genes. 

Disrupted pathways associated with specific illnesses 

were gathered to quantify GO-similarity degrees. 

Moreover, genes associated with these pathways were 

identified from the pathway database. Enrichment 

analysis of GO terms allowed us to gather a lead-in set, 

facilitating the quantification of GO-similarity 

concerning illness-specific GO words. Additionally, GO 

similarity was calculated using Schlicker's measure with 

corpus-based IC values for comparative analysis, 

leading to the creation of a symmetric GO similarity 

matrix (Taha et al., 2013). 

 

SIGNATURE DETECTION 

Employing the widely recognized approach of 

Weighted Gene Co-expression Network Analysis 

(WGCNA), we identified gene modules utilizing the 

GO similarity matrix. Subsequently, Pearson's 

Correlation Coefficients were computed using 

integrated methylation and gene expression data among 

paired genes within each module. The module 

exhibiting the highest average Pearson's Correlation 

Coefficient was identified as the optimal one. This 

module constitutes the 'gene signature' comprised of the 

genes within it (Zhang et al., 2017). 

 

Classification model for the signature 

For signature validation, we employed an RF classifier 

for binary classification, considering all genes as 

features and samples divided into two groups. Utilizing 

5-fold cross-validation (CV), the signature genes data 

was split into training and test sets. The RF classifier 

from the "caTools" R package predicted sample-wise 

class labels on the test set using the training set. This 

process was repeated fifty times. Evaluation of total 

classification performance utilized four measures: 

average specificity, sensitivity, accuracy, and precision. 

Additionally, Figure illustrates a flowchart detailing the 

proposed technique's processes (Sarkar et al., 2019). 

 

EXPERIMENTAL DATASET  

GO graph data 

The UniProt database, released to the public in February 

2016, provides annotation data for Saccharomyces 

cerevisiae. Gene Ontology graph details were sourced 

from www.geneontology.org, considering relations like 

"is a," "part of," and "regulates." 

Protein-protein interaction data of HIV-H. Sapiens 

We evaluated the efficacy of cross-species protein 

interaction prediction using 2423 HIV-H. Sapiens 

protein interaction pairs obtained from the NIAID 

database. Additionally, random negative samples were 

included in our analysis (Khandelwal et al., 2012). 

 

Multi-omics dataset 

We integrated a multi-omics Uterine Leiomyoma 

dataset (NCBI GEO ref. id: GSE31699) containing 

DNA methylation and gene expression profiles. The 

dataset comprised 13,072 matched genes and 32 

samples. Sixteen samples were from Uterine 

Leiomyoma patients, while the rest served as 

myometrial controls (Lee et al., 2013). 

 

3. RESULTS 

Protein-protein interaction prediction results 

In our study, we estimated the graph topology-based 

Information Content (IC) values of Gene Ontology 

(GO) terms using the GO graph, alongside the corpus-

based Resnik IC from annotated GO terms in species' 

proteins. These graph-based IC values encompassed 

Zhou, Nuno, David, Meng, and Yuan. We then 

evaluated Protein-Protein Interaction (PPI) prediction 

performance using various GO similarity metrics, 

including Resnik, Lin, Schlicker, and the proposed 

ModSchlicker for each IC value (Li et al., 2012). 

PPI prediction was conducted employing GO similarity 

scores akin to previous sections. Performance 

assessment of PPI prediction is discussed here, 

employing both MAX and BMA aggregation 

approaches. The proposed ModSchlicker measure 

exhibited superior Area Under the Curve (AUC) values 

for PPI datasets with Biological Process (BP) ontology. 

Specifically, ModSchlicker with Yuan IC showed the 

highest performance (Sanghamitra et al., 2014). 

On the dataset provided by Yu et al., ModSchlicker 

algorithm excelled, particularly for BP ontology with 

Yuan IC. Contrastingly, Schlicker's measure using 

corpus-based Resnik IC displayed lower AUCs. GO 

similarity measures utilizing graph topology-based IC 

values consistently outperformed Resnik IC across 

experiments (Koushik et al., 2020). 

For the H. Sapiens dataset, ModSchlicker measure 

demonstrated superiority over Lin, Resnik, and 

Schlicker measures, particularly with graph topology-

based IC values. Our comprehensive investigation 
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indicates the promising future of graph topology-based 

IC values compared to corpus-based Resnik IC for GO 

similarity. The ModSchlicker measure consistently 

outperformed other metrics across datasets and IC 

values, affirming its efficacy in PPI prediction 

(Sanghamitra et al., 2016). 

 

Cross-species PPI prediction results 

The presented metric efficiently computes 

cross-species protein Gene Ontology (GO) similarity, 

crucial for analyzing viral host interactome, particularly 

H. sapiens and HIV protein interactions. Tastan et al. 

demonstrated its utility in determining functional 

connections between proteins across species. GO terms 

from H. sapiens and HIV proteins are collected to 

compute the corpus-based Resnik impact coefficient. 

Schlicker's measure, combined with Resnik IC, 

calculates GO similarities for positive and negative 

protein pairings. IC values are computed using the GO 

graph, while ModSchlicker and AUC values determine 

similarity. Schlicker's measure yields an AUC of 0.61, 

whereas ModSchlicker with Meng, Yuan, and David IC 

achieves 0.716, 0.704, and 0.69, respectively. This 

suggests significant improvement with the proposed 

method. The effectiveness of ModSchlicker, utilizing 

graph topology-based IC values, is thus demonstrated 

(Koushik et al., 2019). 

 

Multi-omics data 

In our Uterine Leiomyoma dataset, comprising 13,072 

shared genes, the CoMEX approach identified 558 

statistically significant (p < 0.05) DEM genes. Among 

these, 497 genes had GO keyword annotations, 

generating a similarity matrix of size (497, 497) for 

each GO ontology category (BP, CC, MF) using 

Schlicker and ModSchlicker. Utilizing various integral 

component models, we determined the highest values 

across these matrices and applied the WGCNA 

algorithm to identify DEM genes and gene modules. 

The module with the strongest correlation represents the 

illness signature; for instance, the brown module with 

74 genes exhibited the highest average Pearson's 

correlation (0.56). Clustering validity measures, 

including average scaled connectivity, centralization, 

density, heterogeneity, and Silhouette width, were 

calculated, and the dendrogram, softthresholding power 

computation plot, and TOM plot were generated. Using 

the RF classifier, we classified samples into Uterine 

Leiomyoma and myometrial groups, achieving an 

average accuracy of 99.15% (±0.032%) and an AUC of 

0.9822. In 4-fold CV, accuracy reached 99.19% 

(±0.04%) with a higher AUC of 0.9851 (Asa et al., 

2015). 

 

 
Figure 2: Vertical axis shows range of similarity 

values of gene-pairs using ModSchlicker. Here gene-

pairs having similarity value in the range (0.9-1.0) 

using Lin‘s measure 

 

Horizontal axis shows different IC model (Legend 

mentioned as 1, 2, 3 and 4 for Meng IC 

The classification study employed a five-fold cross-

validation (CV). Combining the ModSchlicker measure 

with the Zhou IC model yielded six gene modules: blue 

(98 genes), brown (96 genes), green (38 genes), red (33 

genes), turquoise (133 genes), and yellow (58 genes). 

The blue module, with the highest average Pearson's 

correlation among paired genes (0.51), was deemed a 

gene signature. Clustering validity metrics include 

average scaled connectivity (0.23), average clustering 

coefficient (0.039), density (0.01), and centralization 

(0.03). Heterogeneity was 0.85, silhouette width was 

0.01, and Dunn index was 0.64. The Random Forest 

classifier utilized all samples (Uterine Leiomyoma and 

myometrial) with signature genes as features. 

Classification yielded 97.79% (±0.032) accuracy and 

AUC of 0.9854 for four-fold CVs, and 97.82% (±0.033) 

accuracy and AUC of 0.9870 for five-fold CVs. Tables 

1 and 2 detail assessment measures including 

sensitivity, specificity, accuracy, precision, and AUC 

for different IC values (Yungki et al., 2019). 
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Table 1: AUCs values of different GO similarity 

measures on PPI data. 

 
Table AUCs values of different GO similarity 

measures on PPI data. 

 

Table AUCs values of different GO similarity 

measures on PPI data. 

 
Table 3. 1 Classification metrics for the signature, 

detected via ModSchlicker with various IC values 

(Nuno, David, Meng, Zhou, and Yuan), were 

compared to Schlicker with Resnik IC (corpus-

based) in multi-fold CV (4-fold, 50 repetitions). 

 
Table 3. 2 For the multi-omics dataset, classification 

metrics were computed using the ModSchlicker with 

various IC values (Nuno, David, Meng, Zhou, and 

Yuan) versus Schlicker with Resnik IC (corpus-

based) in 5-fold CV (repeated 50 times). 

 

 
Figure The content includes (a) dendrogram post-

dynamic tree cut, (b) soft thresholding power 

selection plot, (c) tom plot, and (d) AUC of the gene 

signature (best gene module) using proposed 

ModSchlicker for Meng model in the omics data. 

 

4. DISCUSSION 

The integration of network-based approaches, 

combining unsupervised and supervised methods, has 

significantly advanced the analysis of protein-protein 

interaction networks (PPINs), offering novel insights 

into cellular processes and disease mechanisms (Stefan 

et al., 2012). 

By leveraging unsupervised methods such as clustering 

algorithms, we were able to identify densely connected 

protein modules within PPINs, elucidating functional 

units and pathways. These modules provide valuable 

information about the organization and regulation of 

cellular processes, aiding in the understanding of 

complex biological phenomena (Jiantao et al., 2010 ). 

Moreover, the integration of supervised methods 

enabled the prediction of novel protein interactions with 
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high accuracy. Machine learning algorithms trained on 

known interactions and network features effectively 

uncovered hidden patterns and associations within 

PPINs, facilitating the discovery of potential therapeutic 

targets and biomarkers (Tanya et al., 2017). 

Our study also highlights the importance of combining 

unsupervised and supervised methodologies for a 

comprehensive analysis of PPINs. The synergistic 

approach allowed us to refine the identification of 

functional modules and prioritize candidate interactions, 

enhancing our understanding of PPIN dynamics (Karen 

et al., 2014). 

Furthermore, the proposed framework demonstrated 

robustness and efficiency in identifying gene signatures 

from multi-omics data, including gene expression and 

methylation profiles. This comprehensive approach 

holds promise for identifying disease signatures and 

understanding the molecular mechanisms underlying 

complex diseases such as Uterine Leiomyoma 

(Christian et al., 2022). 

 

5. CONCLUSION 

In conclusion, our research has showcased the efficacy 

and potential of integrating network-based approaches, 

merging unsupervised and supervised methods, for the 

analysis of protein-protein interaction networks 

(PPINs). Through the utilization of clustering 

algorithms and machine learning techniques, we have 

successfully uncovered intricate patterns and 

associations within PPINs, shedding light on the 

underlying mechanisms of cellular processes and 

disease pathogenesis. 

The synergy between unsupervised and 

supervised methodologies has allowed for a 

comprehensive understanding of PPIN dynamics, 

facilitating the identification of functional modules and 

the prediction of novel protein interactions. 

Furthermore, our study underscores the importance of 

leveraging multi-omics data to enhance the robustness 

and accuracy of PPIN analysis, offering valuable 

insights into disease signatures and molecular 

mechanisms. Moving forward, the integration of 

network-based approaches holds immense promise for 

advancing biological research and drug discovery 

efforts. By harnessing the power of computational 

methods and big data analytics, we can accelerate the 

identification of therapeutic targets and biomarkers, 

paving the way for personalized medicine approaches 

and improved patient outcomes. 
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