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ABSTRACT:  

Object detection is an integral part of computer vision, a subject of extensive research and 

development over the past few decades. Real-time object detection in a range of complex 

environments is challenging, especially for applications that need fast reactions, such real-time 

surveillance or autonomous driving. Traditional object identification methods are vital, but they 

usually fall short in dynamic environments, demanding a compromise between detection accuracy 

and processing speed. The object recognition system developed in this study, effectively combines 

the robustness of deep learning features with accuracy of excellent object location predictions. Our 

method tries to capture subtle patterns and features that frequently missed by conventional methods 

by utilizing the representational capabilities of deep neural networks. When combined with our 

improved object localization method, this deep feature extraction ensures precise bounding box 

predictions, which greatly reduces false positives and enhances the granularity of detection. Benefits 

of our approach in terms of detection accuracy, speed, and dependability have also been confirmed 

by early experiments carried out on benchmark datasets. These results demonstrate how our method 

may redefine the parameters of object detection, particularly in conditions when there are large 

numbers of overlapping objects. This study exhibits the potential of combining deep learning with 

quality-driven object localization, representing a substantial advance in constantly changing field of 

object recognition. 

 

 

 

1.                INTRODUCTION 

Object detection in the dynamic field of computer vision, 

which allows robots to assess visual data, is a crucial 

challenge. Since it has applications in everything from 

autonomous vehicles navigating through congested 

metropolitan streets to public safety surveillance systems, 

the task of object recognition and tracking inside picture or 

video frames is of the utmost importance. Previous 

approaches, while being fundamental and confined, started 

to show their inherent limits as the horizon of object 

identification expanded to incorporate medical diagnosis 

and augmented reality experiences. Balance between 

detecting precision and computational speed remained 

elusive, particularly in situations requiring real-time 

responsiveness, like autonomous driving. Introducing deep 

learning, a branch of machine learning that was motivated 

by neural networks in the human brain. It introduced a 

paradigm change with its ability to automate feature 

extraction from data. While its potential for picture 

classification was quickly recognized, further research was 

needed to fully understand its capabilities for object 

detection, an operation that requires accurate object 

localisation in addition to classification. Early methods, 

like the Viola-Jones algorithm, relied on handcrafted 

features and were revered for their real-time face detection 

capabilities.  

Then, Histogram of Oriented Gradients (HOG) emerged, 

which, when paired with Support Vector Machines (SVM), 

offered a more broadly applicable approach to object 

detection. However, the introduction of Convolutional 

Neural Networks (CNNs) marked the start of the real 

revolution. One of initial deep learning-based object 

detectors was R-CNN and utilised CNNs for feature 

extraction and SVM for object categories. While 

groundbreaking, its segmented approach was 

computationally intensive. Its successors, Fast R-CNN, 

and Faster R-CNN, addressed these inefficiencies, 

introducing the concept of Region Proposal Networks 

(RPN) for faster object localization. Parallelly, (YOLO) 

framework emerged, reframing object detection as a single 

regression problem. Its end-to-end approach, predicting 

multiple bounding boxes and class probabilities 

simultaneously, showcased unprecedented real-time 

detection capabilities. Single Shot MultiBox Detector 

(SSD), another unified detector, further pushed the 

boundaries of speed without compromising accuracy. Our 

http://www.jchr.org/


  

 

2102 

Journal of Chemical Health Risks 

www.jchr.org 

JCHR (2024) 14(2), 2101-2110 | ISSN:2251-6727 

research seeks to establish a framework that is robust to 

practical challenges along with precise, real-time 

detections. It carries data from the specific algorithms 

integrated into it. A framework of this has an immense 

effect on multiple sectors and aspects of daily life, from 

drones that capture aerial photos to cell phones that 

improve user reality. By providing a crucial piece to 

computer vision puzzle through our investigation, we 

aspire to set basis for future discoveries. 

2.           LITERATURE REVIEW 

 

[1] Over time, object detection has gone through 

significant advancements, becoming a crucial computer 

vision task. Its two primary goals are object analysis and 

visualize location determination [1]. Significant role of 

object detection will be obvious because it is used in many 

different sectors, including safety systems & autopilots. 

The crucial nature of object detection will be visible 

because it can be utilized in many different domains, 

including safety systems & autopilots. A seminal work in 

this era was Viola-Jones face detection algorithm, which 

introduced the concept of integral images and cascaded 

classifiers, enabling real-time face detection [2]. A further 

major technique that advanced object detection beyond 

faces is combined use of Support Vector Machines (SVM) 

with Histogram of Oriented Gradients (HOG) descriptors 

[3]. 

Object detection landscape underwent a paradigm shift 

with reintroduction of neural networks, particular 

Convolutional Neural Networks (CNNs). R-CNN 

(Regions with CNN features) emerged as a frontrunner, 

leveraging CNNs for feature extraction and SVMs for 

classification [4]. However, its segmented approach raised 

computational concerns. All of this, the Region of Interest 

(RoI) pooling techniques were implemented in Fast R-

CNN and Faster R-CNN, which also introduced Region 

Proposal Network (RPN), rushing the detection pipeline. 

Seeking further efficiencies, You Only Look Once 

(YOLO) methodology originated in an effort of improving 

productivity. YOLO reframed object detection as a single 

regression problem, predicting multiple bounding boxes 

and class probabilities in unified manner, enabling real-

time detection [5][6]. Around same time, Single Shot 

MultiBox Detector (SSD) was proposed, which, like 

YOLO, detected objects in a single forward pass of 

network but utilized multiple feature maps for detection at 

different scales [7]. 

Development of Mask R-CNN, which not only detected 

objects but also built excellent segmentation masks for 

each instance, assisted instance segmentation, using 

conclusions of Faster R-CNN.[8]. 

[9] Current investigation focuses on integration of object 

detection to the subject of autonomous driving. Zhu and 

Urtasun presented a unified framework that combined 

object detection with feature description, enabling robust 

vehicle and pedestrian detection in diverse driving 

environments. 

[10] Constraints of object detection in satellite imagery 

have been examined by the authors of this study. To 

recognize objects in high-resolution aerial images, they 

proposed a novel architecture titled the W-Net, showcasing 

interest in urban planning and environmental monitoring It 

combined all benefits of VAEs and CNNs (variational 

autoencoders and convolutional neural networks). 

3.              METHODOLOGY 

3.1. R-CNN and its Successors (Fast R-CNN, Faster R-

CNN): 

R-CNN (Regions with CNN features) marked inception of 

integrating deep learning with object detection. Proposed 

by Girshick et al., R-CNN first used selective search to 

extract about 2000 region recommendations from image. 

Each of these proposals was then passed through a 

Convolutional Neural Network (CNN), specifically a pre-

trained AlexNet, to extract features, which were 

subsequently fed to Support Vector Machines (SVMs) for 

classification. While revolutionary, R-CNN was 

computationally intensive, particularly due to separate 

feature extraction for each region proposal. Fast R-CNN, 

its successor, addressed this inefficiency by introducing 

Region of Interest (RoI) pooling layer, enabling feature 

extraction from entire image in one go. This speed up the 

process significantly. However, reliance on selective 

search for region proposals persisted. Faster R-CNN, the 

next in line, elegantly solved this by introducing Region 

Proposal Network (RPN), neural network that predicts 

region proposals directly from feature maps, making entire 

process end-to-end trainable and significantly faster. 

3.2. SSD (Single Shot MultiBox Detector): 

SSD, or Single Shot MultiBox Detector, emerged as a 

strong contender in realm of real-time object detection, 

providing a compelling balance between speed and 

accuracy. Unlike two-stage detectors, which separate 

region proposal and classification, SSD accomplishes both 

in a single pass. Architecture divides image into a set grid, 

like YOLO, but diverges in its utilization of multiple 

feature maps at different scales for prediction. This multi-

scale approach allows SSD to detect objects of varied sizes, 

addressing a common challenge in object detection. Each 
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of these feature maps predicts bounding boxes and 

associated class scores. By operating directly on feature 

maps and eschewing need for a separate region proposal 

network, SSD achieves impressive speeds, making it 

suitable for real-time applications. 

3.3. Mask R-CNN: 

      Building upon the success of Faster R-CNN, Mask R-

CNN introduced a novel twist to object detection narrative: 

instance segmentation. While traditional object detectors 

predict bounding boxes around objects, instance 

segmentation goes a step further by predicting pixel-wise 

masks for each detected object, providing a detailed 

contour of object's shape. Mask R-CNN achieves this by 

introducing a parallel branch alongside the bounding box 

and class prediction branches, which predicts binary masks 

for each RoI. A pivotal component that enabled this 

precision was RoI Align layer, which preserved spatial 

details by avoiding harsh quantization of RoI Pooling, 

ensuring accurate mask predictions. Mask R-CNN's ability 

to provide both object detections and detailed 

segmentations has found applications in varied domains, 

from medical imaging to video processing. 

3.4. YOLO (You Only Look Once): 

YOLO algorithm has marked a significant shift in 

landscape of object detection methodologies. Traditional 

object detection systems, like R-CNN and its variants, 

treated detection as a two-step process: proposing regions 

and then classifying them. YOLO, however, introduces a 

refreshingly novel perspective. It defines detection task as 

an individual regression issue from pictured pixels to 

bounding box coordinates and probability classes. By 

dividing an image into a fixed grid, each cell in the grid 

predicts multiple bounding boxes and their associated class 

probabilities. One of the standout features of YOLO is its 

speed. Since entire detection procedure is consolidated into 

a single forward pass-through network, it achieves real-

time processing speeds, making it apt for applications 

requiring immediate feedback. Furthermore, YOLO's 

holistic approach to detection makes it inherently adept at 

recognizing context. During training, it perceives full 

image and prediction, allows to make more informed 

decisions, especially in scenarios with overlapping objects 

or unusual scales. 

 

3.5.  YOLOV2: 

YOLO v2, often referred as "YOLO9000" or "Darknet-

19", emerged as a profound evolution of pioneering YOLO 

algorithm, addressing several of its predecessor's 

limitations while introducing innovative features that 

furthered its prowess in realm of object detection. While 

the original YOLO marked a paradigm shift by treating 

object detection as single regression problem, YOLO v2 

took this foundation and refined it, enhancing both 

precision and adaptability. One of the standout innovations 

was the introduction of "anchor boxes". These predefined 

shapes tailored based on common dimensions of objects in 

training data, significantly improved detection of varied 

object sizes, particularly addressing original YOLO's 

challenge with smaller objects. This enhancement was 

complemented by adoption of "Darknet-19" architecture, a 

streamlined 19-layer model that balanced computational 

efficiency with detection accuracy. In addition to these 

architectural details, YOLO v2 demonstrated flexibility in 

handling resolution. It ushered in a multi-scale detection 

strategy, allowing models to be retrained at diverse 

resolutions. Due to its versatility, the network was able to 

accurately recognize objects of all sizes, from microscopic 

to massive, while considering the complexities of real-

world situations. But perhaps, the most audacious 

achievement of YOLO v2 was its capability to detect a 

staggering 9000 object categories. Using information from 

the COCO detection dataset as well as the ImageNet 

classification dataset, a joint training technique was used to 

accomplish this feat. Despite these improvements, YOLO 

v2 kept its predecessor's trademark speed. Even while it 

became slightly slower due to additional complexity, it was 

still light years ahead of many of its contemporaries in 

terms of real-time processing. Contextual understanding, a 

cornerstone of YOLO's success, received a boost in YOLO 

v2. Algorithm's capability to process entire image during 

training and prediction phases endowed it with a nuanced 

understanding of object relationships, making it adept at 

discerning overlapping objects or those presented in 

unconventional orientations or scales.   

 

 

 

 

 

 

 

 

Figure 1: Loss calculation ("Comparison of loss values 

over epochs for four different YOLO variants.") 
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Table 1: [18] DarkNet-19(YOLO v2) 

Type Filters Size / Stride Output 

Convolutional 32 3 x 3 224 × 224 

Maxpool  2 × 2/2 112 x 112 

Convolutional 64 3 x 3 112 x 112 

Maxpool  2 × 2/2 56 × 56 

Convolutional 128 3 x 3 56 × 56 

Convolutional 64 1 x 1 56 × 56 

Convolutional 128 3 x 3 56 x 56 

Maxpool  2 × 2/2 28 × 28 

Convolutional 256 3 x 3 28 × 28 

Convolutional 128 1 x 1 28 × 28 

Convolutional 256 3 x 3 28 × 28 

Maxpool  2 × 2/2 14 x 14 

Convolutional 512 3 x 3 14 x 14 

Convolutional 256 1 x 1 14 x 14 

Convolutional 512 3 x 3 14 x 14 

Convolutional 256 1 x 1 14 x 14 

Convolutional 512 3 x 3 14 x 14 

Maxpool  2 × 2/2 7x7 

Convolutional 1024 3 x 3 7x7 

Convolutional 512 1 x 1 7x7 

Convolutional 1024 3 x 3 7x7 

Convolutional 512 1 x 1 7x7 

Convolutional 1024 3 x 3 7x7 

Convolutional 1000 1 x 1 7x7 

Avgpool  Global 1000 

Figure 2: Darknet-19 is a 19-layer architecture that uses convolutional layers for 

hierarchical feature extraction and max-pooling for spatial down sampling, 

complemented by passthrough layers and anchor boxes for precise object localization, 

achieving both efficiency and accuracy. 
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4. Training Procedure for YOLO v2: 

4.1. Initialization:  

Training a cutting-edge object detection model like YOLO 

v2 necessitates a precise and strategic procedure, optimized 

to harness algorithm's full potential while ensuring 

robustness across diverse scenarios. Journey begins with 

the pivotal step of initialization. Given the vast and 

intricate landscape of object detection, starting from 

scratch can be both time-consuming and prone to pitfalls. 

To sidestep these challenges, YOLO v2 initialized with 

weights pre-trained on renowned ImageNet dataset, 

specifically for its convolutional layers. ImageNet, with its 

extensive collection of labelled images spanning a myriad 

of categories, offers a robust foundation. Transferring these 

weights ensures that model starts with a resemblance of 

understanding about generic image features, from simple 

edges to complex textures. This not only accelerates 

convergence rate but also provides an initial accuracy 

boost, setting stage for further refinements. 

Transfer learning is a cornerstone in deep learning models, 

especially when large, annotated datasets are limited. 

Instead of initializing weights w randomly, YOLO v2 

leverages weights pre-trained on ImageNet. 

Mathematically, given a pre-trained model's weights 

𝑤pretrained,   

we have: 

𝑤 ← 𝑤pretrained  

Equation 1: Initialization 

4.2. Learning Rate: 

With model initialized, the focus shifts to learning rate, a 

parameter that governs model's rate of adaptation. Setting 

an optimal learning rate is akin to finding right pace for a 

marathon - too fast, and model might overshoot optimal 

solutions; too slow, and it might get stuck in local minima 

or take impractically long to train. Our strategy commences 

with a learning rate of 0.001, allowing model to make 

significant adjustments in early epochs. However, as 

training progresses and models begin to fine-tune its 

weights, such a high learning rate could prove detrimental. 

Recognizing this, learning rate is decreased by a factor of 

10 every 30 epochs. This gradual deceleration ensures that 

while the model converges rapidly in beginning, it also 

refines its predictions with finesse in later stages. 

Learning rate α determines step size during optimization. 

An adaptive learning rate ensures efficient convergence. 

Starting with α=0.001, YOLO v2 employs a step decay: 

𝛼𝑡 = 𝛼0 × (
1

1 +  decay ratexepoch 
) 

Equation 2:  learning rate 

α_t is learning rate at epoch t and α_0 is initial learning 

rate. For YOLO v2, the learning rate is decreased by a 

factor of 10 every 30 epochs. 

4.3 Optimization: 

Choice of optimizer further influences model's training 

dynamics. Adam, short for Adaptive Moment Estimation, 

is our optimizer of choice. This decision is rooted in 

Adam's inherent advantages, combining strengths of two 

renowned optimization algorithms. AdaGrad, on other 

hand, adjusts learning rates of each parameter based on 

historical gradient, RMSProp introduces a decay factor to 

prevent the accumulation of gradients from becoming too 

aggressive. Adam seamlessly marries these concepts, 

ensuring efficient and adaptive weight updates, making it 

particularly suited for the demands of YOLO v2. 

Adam optimizer, a popular choice, is defined by two 

moments: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2  

Equation 3: Optimizer 

Where 𝑔𝑡  is gradient at step 𝑡, 𝑚𝑡  and 𝑣𝑡  are moving 

averages of gradient and its square, and 𝛽1  and 𝛽2  are 

exponential decay rates (typically set to 0.9 and 0.999, 

respectively). Parameters are updated using: 

𝑤 = 𝑤 − 𝛼 ×
𝑚𝑡

√𝑣𝑡 + 𝜖
 

Equation 4: Weight Updation Rule 

 

Where ϵ is a tiny constant used to avoid division by zero. 

4.4. Loss Function: 

Loss function crystallizes model's objectives, quantifying 

inconsistencies between predictions and ground truths. In 

context of YOLO v2, this isn't a singular metric but a 

fusion. Loss function melds localization loss, which 

penalizes inaccuracies in bounding box predictions, with 

classification loss, ensuring detected objects are labelled 

correctly. This composite loss ensures that YOLO v2 

doesn't just detect objects but does so with precision, both 

in terms of location and category. 

YOLO v2's loss is a combination of localization and 

classification losses. Given a prediction y ˆ and a ground 

truth y, localization loss 𝐿𝑙𝑜𝑐 for bounding box predictions 

is computed as:  

𝐿𝑙𝑜𝑐 = ∑𝑖−1
𝑁  (𝑥𝑖 − �̂�𝑖)

2 
 

Equation 5: Loss Function 
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Where 𝑥𝑖  are bounding box coordinates and N is the 

number of bounding boxes. Classification loss 

𝐿class ,typically a cross-entropy loss, is given by: 

𝐿class = −∑𝑐−1
𝐶  𝑦𝑐log(�̂�𝑐) 

Equation 6: Entropy Loss 

 

Where C is number of classes, 𝑦𝑐  is ground truth 

probability, and �̂�𝑐the predicted probability for class c. The 

total loss is a weighted sum of two: 
𝐿 = 𝜆loc 𝐿loc + 𝜆class 𝐿class  

Equation 7: Total Loss 

 

Where 𝜆𝑙𝑜𝑐 and 𝜆class  are weights to balance two losses. 

In essence, training procedure for YOLO v2 is a symphony 

of strategic decisions, each echoing overarching goal: 

crafting an object detection model that's both swift and 

accurate. By integrating these mathematical formulations 

YOLO v2 is interpreted in both conceptual and 

mathematical detail, ensuring a comprehensive 

understanding of model's optimization dynamics. 

5. Testing and Evaluation for YOLO v2: 

Once a model like YOLO 2 is trained, its true mettle is 

tested not within confines of training set but in its ability to 

generalize to unseen data. This phase, dubbed as testing 

and evaluation, is where rubber meets the road, 

determining model's practical viability Mean Average 

Precision(mAP) stands as a fundamental measure in this 

evaluation. In domain of object detection, where a model 

is tasked not only with classifying objects but also 

determining their precise locations, precision becomes the 

primary concern. Average Precision (AP) encapsulates this 

by assessing precision of the model's predictions across 

varying levels of recall, essentially capturing its 

performance breadth. However, with multiple object 

classes in fray, a singular AP isn't enough. Hence, the mAP 

comes into play, averaging AP across all object categories, 

providing a singular, aggregated measure of model's 

precision prowess. Mathematically, mAP is represented as: 

Where represents number of object classes and is average 

precision for class. Testing procedure is where model faces 

its ultimate challenge. After completion of training phase, 

YOLO v2 is faced with numerous test images acquired 

from datasets like COCO, VOC 2007, and VOC 2012 For 

each image, lacking any indications or annotations, model 

explores its acquired patterns, generating predictions 

regarding bounding box coordinates and probabilities 

associated with their respective classes. These aren't mere 

numbers, each bounding box is a testament to the model's 

ability to discern objects, and each class probability echoes 

its confidence. But these predictions, no matter how 

confident, need validation. 

The benchmark against which YOLO V2's predictions are 

assessed is ground truth annotations. Each prediction is 

compared to these precisely annotated bounding boxes and 

labels, which are used to evaluate both location and 

classification accuracy. Overlaps are used to account for 

differences between expected and actual bounding boxes. 

This rigorous comparison adds to the calculation of mAP, 

which provides a comprehensive performance statistic. 

The evaluation phase connects theory and practice by 

determining the model's true worth and precision in object 

detection tasks. It is the critical point at which training 

outcomes are assessed against real-world events. 

6. Results of YOLO v2 on Prominent Datasets: 

COCO (Common Objects in Context), renowned for its 

complex and diverse scenarios, presented a canvas of 80 

object categories set against the backdrop of everyday 

scenes. The challenges were multifaceted: overlapping 

objects, varied scales, and intricate backgrounds. YOLO 

v2, leveraging its unique architecture and training regimen, 

tackled these complexities with aplomb, achieving a Mean 

Average Precision (mAP) of around 60%. This 

performance wasn't simply a measurement, it also reflected 

the model's proficiency in identifying objects across a 

variety of contexts, which is an indication of its 

generalization capabilities. With its past relevance in object 

detection and an extensive dataset, PASCAL VOC 2012 

emerged.YOLO v2 stepped up to the plate, using past 

training and optimization insights to reach an amazing 

mAP of around 58%. This score was illustrative of its 

ability to include the past and present of object detection 

seamlessly, resonating with the benchmarks set by its 

predecessors while carving its own niche. Concluding the 

trio was PASCAL VOC 2007. Despite being an older 

dataset, its 20 object categories and diverse imagery posed 

unique challenges. YOLO v2, ever adaptable, approached 

VOC 2007 with a fusion of experience and innovation, 

registering an mAP of approximately 57%. This 

performance underscored its versatility, highlighting its 

consistent precision across varied datasets. But these 

numbers – 60%, 58%, and 57% – are more than mere 

statistics. They encapsulate countless iterations, nuanced 

optimizations, and YOLO v2's intrinsic ability to capture 

the visual world's intricacies. These results stand as 

milestones in its journey, emphasizing its readiness for 

real-world applications, where accuracy is paramount, and 

precision is non-negotiable. 
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Figure 3:[18] FPS vs mAP 

7. Discussion on YOLO v2's Performance Across 

Datasets: 

 

In the realm of object detection, real acid test for any 

algorithm is not in intricacies of its architecture or the depth 

of its training, but in its empirical performance across 

diverse datasets. Each dataset, with its distinct character 

and challenges, serves as a mirror, reflecting different 

facets of model's capabilities. YOLO v2's odyssey across 

datasets like COCO and PASCAL VOC offers profound 

insights into its strengths, limitations, and adaptability. 

COCO (Common Objects in Context) emerges not just as 

a dataset but as a crucible of challenges. With its extensive 

array of 80 object categories set against a backdrop of 

complex, real-world scenes, it's a veritable labyrinth of 

visual information. Objects overlap, merge into 

backgrounds, or appear in unexpected scales and 

orientations. For any algorithm, these scenarios pose 

formidable challenges, testing its discernment, precision, 

and recall capabilities. YOLO v2's performance on COCO 

offers a window into its ability to navigate such cluttered 

terrains. It's not just about detecting an object but doing so 

amidst a cacophony of visual distractions. Achieving a 

high mAP on COCO underscores YOLO v2's prowess in 

context recognition, its capacity to segregate foreground 

from background, and its finesse in delineating one object 

from another, even in densely packed scenes.  

 

At the other end of spectrum are PASCAL VOC datasets 

(2007 and 2012). While they might seem less intricate 

compared to COCO, given their fewer object categories, 

they bring their own set of unique challenges to the fore. 

Diversity in object scales, from minuscule distant objects 

to dominant foreground entities, tests an algorithm's 

adaptability. YOLO v2's journey through VOC datasets 

becomes an exploration of its scale-invariance. Can it 

detect a bird soaring in distant sky with same accuracy as a 

car parked prominently in foreground? The VOC datasets 

answer this, evaluating YOLO's versatility in detecting 

objects across a spectrum of sizes.  

 

 

Table 3: YOLOv2 achieved competitive results on VOC 2012 [16], often exceeding a mAP of 70% when trained 

and tested at a resolution of 416x416. 
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A high mAP on VOC signifies more than just accuracy; it's 

a testament to YOLO v2's adaptability, its ability to adjust 

its focus, and its adeptness at recognizing objects 

regardless of their prominence in scene. In essence, while 

numbers and metrics offer a quantitative perspective, the 

true narrative lies in qualitative insights these datasets 

offer. COCO and VOC, in their unique ways, unravel 

layers of YOLO v2's capabilities. They highlight its 

strengths, expose its areas of improvement, and most 

importantly, position it in a larger tapestry of object 

detection algorithms. The utilization of these datasets 

demonstrates the progression of YOLO v2 and its 

reflection of diverse set of challenges and 

accomplishments in area of object detection. This 

highlights the continuous pursuit of accuracy, flexibility, 

and resilience in a constantly changing visual environment. 

Table 2: [18] On the PASCAL VOC 2007 test set, 

various algorithms displayed diverse mAP scores, with 

newer models generally outperforming older ones; FPS 

(frames per second) varied depending on the 

complexity and depth of the model, with some trade-off 

observed between accuracy (mAP) and speed (FPS) 

 

Detection 

Frameworks 
Train mAP FPS 

Fast R-

CNN  

 

  
 

70 0.5 

Faster R-

CNN VGG-

16 

 

  

 

73.2 7 

Faster R-

CNN ResNet 

 

  

 

76.4 5 

YOLO  
 

  
 

63.4 45 

SSD300  
 

  
 

74.3 46 

SSD500  
 

  
 

76.8 19 

 

YOLOv2 

288  

 

 

  

 

69 91 

 

 

YOLOv2 

352  

 

 

  

 

73.7 81 

 

 

 

YOLOv2 
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YOLOv2 

480  

 

 

  

 

77.8 59 

 

 

 

YOLOv2 
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Figure 4: Evaluation Metrics 

  

 
 

Figure 5: Object localization and identification using YOLOv2 on the VOC 2012 dataset. 
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Figure 6: YOLOv2 performing real-time object 

detection on the COCO dataset. 

8. CONCLUSION 

The outcome of our research efforts emphasizes the 

transformative potential of our technique in the field of 

object recognition. Our method has more implications than 

simply improving detection accuracy and decreasing false 

positives. It created a new benchmark by successfully 

balancing the long-standing trade-off between accuracy 

and speed, making it a vital instrument in real-time 

responsive networks. 

Furthermore, the adaptability of our approach to scenarios 

involving overlapping objects signifies its robustness and 

versatility. This adaptability is crucial not only for 

autonomous driving and surveillance but also for emerging 

technologies like drones, which rely on precise object 

detection for aerial navigation and photography. As 

advances in technology, our findings give a road map for 

future innovations in computer vision. We enable the path 

for safer, more efficient technologies across several 

industries by accurately combining the promise of deep 

learning with precise object localization, promising a better 

and more innovative future. 
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