Preparation of Modified Magnetic Nanocomposites Dithiooxamide/Fe3O4 for Preconcentration and Determination of Trace Amounts of Cobalt Ions in Food and Natural Water Samples

Ali Mirabi, Nafiseh Aliakbari


The first study on the high efficiency of nanometer-sized magnetic nanoparticles (Fe3O4) coated with sodium dodecyl sulfate (SDS) and dithiooxamide as a new sorbent solid phase extraction has been reported. Modified magnetic nanicomposites was used to preconcentrate and separate Co (II) ions in food and environmental water samples. Magnetic nanoparticles were prepared by chemical precipitation of Fe (II) and Fe (III) salts from aqueous solution by ammonia solution. These magnetic nanoparticles and nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo gravimetric analysis (TGA) and elemental analysis CHNS. A micro sample introduction system was employed for the nebulization micro-volume of diluted solution into flame atomic absorption spectrometry (FAAS). The extraction conditions were optimized by selecting the appropriate extraction parameters including the amount of nanosorbent, pH value, volume of dithiooxamide and condition of eluting solution. The detection limit of this method for Co (II) ions was 1.21 ng ml-1 and the R.S.D. was 0.9% (n=6). The advantages of this new method include rapidity, easy preparation of nanosorbents and a high preconcentration factor. The proposed method has been applied to the determination of Co (II) ions at trace levels in real samples such as, kiwi, orange, cucumber, apple, green pepper, honey, potato, tap water, river water and sea water with satisfactory results.


Magnetic nanocompo-sites; Fe3O4; Solid phase extraction; Co (II)

Full Text:



Portet-Koltalo F., Oukebdane K., Robin L., Dionnet F., Desbene P.L., 2007. Quantification of volatile PAHs present at trace levels in air flow by aqueous trapping-SPE and HPLC analysis with fluorimetric detection. Talanta. 71, 1825-1833.

Thurman E.M., Mills M.S., Solid-Phase Extraction: Principles and Practice, Wiley: New York, 1998.

Kirk O.R., Othmer F.D., 1982. Encyclopedia of Chem. Technol. 5, 851.

Lippi G., Montagnana M., Targher G., Guidi G.C., 2009. Vitamin B12, folate, and anemia in old age. Arch Intern Med. 7, 716.

Padmavathy V., Vasudevan P., Dhingra S.C., 2003. Biosorption of Ni (II) ions on Baker’s yeast. Process Biochem. (Oxford, UK). 38, 1389-1395.

Yee Mak S., Hwang Chen D., 2005. Binding and sulfonation of poly (acrylic acid) on Iron oxide nanoparticles: a Novel, Magnetic, Strong Acid cation Nano-Adsorbent. Macromol Rapid Commun. 26, 1567-1371.

Lee S.Y., Harris M.T., 2006. Surface modification of magnetic nanoparticles capped by oleic acids: characterization and colloidal stability in polar solvents. J Colloid Interface Sci. 293, 401-408.

Haddad P.S., Martins T.M., Souza-Li L.D., Metze K., Li L.M., Adam R.L., Knobel M., Zanchet D., 2008. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Mater Sci Eng. 28, 489-494.

Hritcu D., Popa M.I., Popa N., Badescu V., Balan V., 2009. Preparation and characterization of magnetic chitosan Nanospheres. Turk J Chem. 33, 785-796.

Kantam L.M., Roy M., Roy S., Sreedhar B., Madhavendra S.S., Choudary B.M., De R.L., 2007. Polyaniline supported palladium catalyzed Suzuki–Miyaura cross-coupling of bromo- and chloroarenes in water. Tetrahedron. 63, 8002-8009.

Ullrich S.M., Tanton T.W., Abdrashitova S.A., 2001. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. J Crit Rev Environ Sci Technol. 31, 241.

Didi M.A., Sekkal A.R., Villemin D., 2011. Cloud-point extraction of bismuth (III) with nonionic surfactants in aqueous solutions. Colloids Surf. A. 375, 169-177.

Mirabi A., Dalirandeh Z., Shokouhi Rad A., 2015. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry. J Magn Magn Mater. 381, 138-144.

Mirabi A., Shokouhi Rad A., Nourani S., 2015. Application of Modified Magnetic Nanoparticles as a Sorbent for Preconcentration and Determination of Nickel Ions in Food and Environmental Water Samples. Trends Anal Chem. 74, 146-151.

Mirabi A., Shokouhi Rad A., Khodadad H., 2015. Modified surface based on magnetic nanocomposite of dithiooxamide/Fe3O4 as a sorbent for preconcentration and determination of trace amounts of copper. J Magn Magn Mater. 389, 130-135.

Mahdavi H., Zirakzadeh A., Amani J., 2007. Modified cross-linked polyacrylamide supported palladium salts as a new heterogeneous catalyst for Heck reaction. React Funct Polym. 67, 716-722.

Raugil A., Squeza A., Olsina R., Luis Martinez D., Cerutti S., 2008. Cloud point extraction for cobalt preconcentration with on-line phase separation in a knotted reactor followed by ETAAS determination in drinking waters. Talanta. 76, 669-673.

Cao Q.E., Zhao Y.K., Wu S.Q., Hu Z., Xu Q., 2000. Study on the mechanism and applications of the fluorescence reactions among cobalt (II), H2O2 and two new derivatives of 8-sulfonamidoquinoline. Talanta. 51, 615-623.

Giokas D.L., Paleologos E.K., Tzouwara-Karayanni S.M., Karayannis M.I., 2001. Single-sample cloud point determination of iron, cobalt and nickel by flow injection analysis flame atomic absorption spectrometry application to real samples and certified reference materials. J Anal At Spectrom. 16, 521-526.

Li Z., Yang G., Yang B., Wang X., Jiang C.Q., Yin J.Y., 2002. Determination of transition metal ions in tobacco as their 2-(2-quinolinylazo)-5-dimethylaminophenol derivatives using reversed-phase liquid chromatography with UV–VIS detection. J Chromatogr A. 971, 243-248.

Paleologos E.K., Prodromidis M.I., Giokas D.L., Pappas A., CH Karayannis M.I., 2002. Highly selective spectrophotometric determination of trace cobalt and development of a reagentless fiber-optic sensor. Anal Chim Acta. 467, 205-215.

Vanstaden J.F., Talijaard R.E., 2004. Determination of Lead(II), Copper(II), Zinc(II), Cobalt(II), Cadmium(II), Iron(III), Mercury(II) using sequential injection extractions. Talanta. 64, 1203-1212.

Pettas I.A., Karayannis M.I., 2003. Application of two-way decomposition methods in the simultaneous determination of cobalt, nickel and iron by coupling stopped-flow techniques and CCD detection. Anal Chim Acta. 491, 219-229.

Yang Y.L., Yang G.Y., Lin Q., 2004. Determination of Heavy Metal Ions in Chinese Herbal Medicine by Microwave Digestion and RP-HPLC with UV-Vis Detection. Microchim Acta. 144, 297-302.

Heitland P., Koster H.D., 2004. Fast, simple and reliable routine determination of 23 elements in urine by ICP-MS. J Anal at Spectrom. 19, 1552-1558.

Soylak M., Divrikli U., Elci L., Dogan M., 2002. Preconcentration of Cr(III), Co(II), Cu(II), Fe(III) and Pb(II) as Calmagite Chelates on Cellulose Nitrate Membrane Filter Prior to their Flame Atomic Absorption Spectrometric Determinations. Talanta. 56, 565-570.

Dash K., Chandrasekaran K., Thangavel S., Dhavile S., Arunachalam J., 2004. Determination of trace metallic impurities in high-purity quartz by ion chromatography. J Chromatogr A. 1022, 25-31.

Zhang L., Zhou J., HaoY., He P., Fang Y., 2005. Determination of Co2+ Based on the Cobalt (II)-Catalyzed Electrochemiluminescence of Luminol in Acidic Solution. Electrochim Acta. 50, 3414-3419.

Robinson P.J., Dunnill P., Lilly M.D., 1973. The properties of magnetic supports in relation to immobilized enzyme reactors. Biotechnol Bioeng. 15, 603-606.

Tong X.D., Sun Y., 2001. Agar-based magnetic affinity support for protein adsorption. Biotechnol Prog. 17, 738-743.

Li Y., Liu Y.C., Tang J., Lin H.Q., Yao N., Shen X.Z., Deng C.H., Yang P.Y., Zhang X.M., 2007. Fe3O4 γ-Al2O3 magnetic core–shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J Chromatogr A. 1172, 57-71.

Yao, N., Chen, H.M., Lin, H.Q., Deng, C.H., Zhang, X.M., 2008. Enrichment of peptides in serum by C8-functionalized magnetic nanoparticles for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. J Chromatogr A. 1185, 93-101.

Liu J.C., Tsai P.J., Lee Y.C., Chen Y.C., 2008. Affinity captures of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4 γ-Al2O3 magnetic nanoparticles. Anal Chem. 80, 5425-5432.

Henglein A., 1989. physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev. 89, 1861-1873.

Liu Y., Liang P., 2005. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Phys Chem. 68, 25-30.

Kang Y.S., Risbud S., Rabolt J.F., Stroeve P., 1996. Synthesis and characterization of nanometer-size Fe3O4 and γ -Fe2O3 particles. Chem Mater. 8, 2209-2211.

Mahmoudi M., Shokrgozar M.A., Simchi A., Imani M., Milani A.S., Stroeve P., Vali H., Hfeli U.O., Bonakdar S., 2009. Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol). J Phys Chem. 113, 2322-2331.

Xu X., Deng C., Gao M., Yu W., Zhang X., 2006. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater. 18, 3289-3293.

Ghaedi M., Ahmadi F., Soylak M., 2007. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples. J Hazard Mater. 147, 226-231.

Safavi A., Iranpoor N., Saghir N., Momeni S., 2006. Glycerol-silica gel: a new solid sorbent for preconcentration and determination of traces of cobalt (II) ion. Anal Chim Acta. 569, 139-144.

Ghaedi M., Karami B., Ehsani Sh., Marahel F., Soylak M., 2009. Preconcentration-separation of Co2+, Ni2+, Cu2+ and Cd2+ in real samples by solid phase extraction of a calix [4] resorcinarene modified Amberlite XAD-16 resin. J Hazard Mater. 172, 802-808.

Manzoori J.L., Sorouradin M.H., Shabani A.M.H., 1999. Atomic absorption determination of cobalt after preconcentration by 1-(2-pyridylazo)-2-naphthol immobilized on surfactant-coated alumina. Microchem J. 63, 295-301.

Parveen R.S., Sobhi D., Prasada Rao T., 2005. Solid phase extraction preconcentration of cobalt and nickel with 5,7-dichloroquinone-8-ol embedded styrene–ethylene glycol dimethacrylate polymer particles and determination by flame atomic absorption spectrometry (FAAS). Talanta. 66, 513-520.


  • There are currently no refbacks.