Mycotoxins’ Toxicities - from Consumer Health Safety Concerns, to Mitigation/Treatment Strategies: A Perspective Review

Document Type : Review Article


1 School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda

2 Kampala International University, Bushenyi, Uganda,

3 Department of Food Science and Technology, Savadkoh Branch, Islamic Azad University, Savadkoh, Iran

4 Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland


Mycotoxins contaminating agricultural commodities like animal, and plant products result in human health complications, some are hidden, visible, chronic, and or acute, and others long-term. To understand the current status, published relevant reviews conducted between 2020-2021 about mycotoxins toxicities involving animals, food, and human showed the need for additional literature synthesis. This would help better the understanding of consumers of animal and plant food products about the importance of mycotoxins toxicities, and such knowledge should extend to other stakeholders within the food supply chain. In this perspective review, we discussed the mycotoxins’ toxicities - from consumer health safety concerns, to mitigation/treatment strategies, drawing from: (a) Toxicology, consumer health safety concerns, and action mechanisms of mycotoxins; (b)  Toxic effects of combined mycotoxins exposure; (c) Major mycotoxin effects on infants and children; (d) Mycotoxin exposures’ complications/risks at various stages of human life; (e) Consumer health implications of mycotoxin exposure; as well as (f) Mycotoxin toxicities mitigation/removal strategies. Indeed, concerted efforts to solve the mycotoxins toxicities are warranted, which should help to deduce more lasting and sustainable ways of preventing fungal invasion and mycotoxins production in the food and feed value chain.


  1. Keller N. P., 2019. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 17, 167–180.
  2. Medina A., Gilbert M.K., Mack B.M., OBrian G.R., Rodríguez A., Bhatnagar D., 2017. Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production. Int J Food Microbiol. 256, 36–44.
  3. Van der Fels-Klerx H.J., Camenzuli L., 2016. Effects of milk yield, feed composition, and feed contamination with aflatoxin B1 on the aflatoxin M1 concentration in dairy cows’ milk investigated using Monte Carlo simulation modelling. Toxins. 8, 290.
  4. Hymery N., Vasseur V., Coton M., Mounier J., Jany J.L., Barbier G., 2014. Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf. 13, 437–456.
  5. Rohlfs M., 2015. Fungal secondary metabolite dynamics in fungus-grazer interactions: novel insights and unanswered questions. Front Microbiol. 6,788.
  6. Ráduly Z., Szabó L., Madar A., Pócsi I., Csernoch L., 2020. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front Microbiol. 10, 2908.
  7. Awuchi C.G., Ondari E.N., Ogbonna C.U., Upadhyay A.K., Baran K., Okpala C.O.R., 2021. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit. Foods. 2021, 10, 1279.
  8. Navale V., Vamkudoth K.R., Ajmera S., Dhuri V., 2021. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol Rep. 8, 1008–1030.
  9. Rushing B.R., Selim M.I., 2019. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol. 124, 81–100.
  10. Udovicki B., Audenaer K., De Saeger S., Rajkovic A., 2018. Overview on the Mycotoxins incidence in Serbia in the period 2004-2016. Toxins. 10, 279.
  11. Smith M.C., Madec S., Coton E., Hymery N., 2016. Natural Co-Occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins. 8, 94.
  12. Souers A.J., Leverson J.D., Boghaert E.R., Ackler S.L., Catron N.D., Chen J., 2013. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 19, 202–208.
  13. Rodrigues I., Handl J., Binder E.M., 2011. Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the middle east and Africa. Food Addit Contam Part B Surveill. 4, 168–179.
  14. Jard G., Liboz T., Mathieu F., Guyonvarc’h A., Lebrihi A., 2011. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 28, 1590–1609.
  15. Cleveland T., Dowd P.F., Desjardins A.E., Bhatnagar D., Cotty P., 2003. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in U.S. crops. Pest Manag Sci. 59, 629–642.
  16. Omotayo O.P., Omotayo A.O., Mwanza M., Babalola O.O., 2019. Prevalence of mycotoxins and their consequences on human health. Toxicol Res. 35, 1–7.
  17. Battilani P., Toscano P., Van der Fels-Klerx H.J., Moretti A., Camardo Leggieri M., Brera C., 2016. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci Rep. 6, 24328.
  18. Gruber-Dorninger C., Jenkins T., Schatzmayr G., 2019. Global mycotoxin occurrence in feed: A ten-year survey. Toxins. 11, E375.
  19. Franco L.T., Ismail A., Amjad A., de Oliveira C.A.F., 2021. Occurrence of toxigenic fungi and mycotoxins in workplaces and human biomonitoring of mycotoxins in exposed workers: a systematic review. Toxins Rev. 40(4), 576-591.
  20. da Silva J.V.B., de Oliveira C.A.F., Ramalho L.N.Z., 2021. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. Food Sci Technol. (In-press),
  21. Cimbalo A., Alonso-Garrido M., Font G., Manyes L., 2020. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol. 137, 111161.
  22. Zhang Z., Nie D., Fan K., Yang J., Guo W., Meng J., Zhao Z., Han Z., 2020. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Crit Rev Food Sci Nutr. 60(9), 1523-1537.
  23. Imran M., Cao S., Wan S., Chen Z., Saleemi M.K., Wang N., Naseem M.N., Munawar J., 2020. Mycotoxins - A Global One Health Concern: A Review, Agrobiological Record. 2, 1-16.
  24. Adeyeye S.A.O., 2020. Aflatoxigenic fungi and mycotoxins in food: a review, Crit. Rev. Food Sci Nutr. 60(5), 709-721
  25. Adegbeye M.J., Reddy P.R.K., Chilaka C.A., Balogun O.B., Elghandour M.M.M.Y., Rivas-Caceres R.R., Salem A.Z.M., 2020. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies – A review, Toxicon. 177, 96-108.
  26. Dellafiora L., Dall’Asta C., Galaverna G., Dellafiora L., Dall’Asta C., Galaverna G., 2018. Toxicodynamics of mycotoxins in the framework of food risk assessment-an in silico perspective. Toxins. 10, 52.
  27. Shaw C.I., 2014. Chemical residues, food additives and natural toxicants in food – the cocktail effect. Int J Food Sci Technol. 49, 2149–2157.
  28. Marroquín-Cardona A.G., Johnson N.M., Phillips T.D., Hayes A.W., 2014. Mycotoxins in a changing global environment – A review. Food Chem Toxicol. 69, 220–230.
  29. Vanhoutte I., Audenaert K., De Gelder L., 2016. Biodegradation of mycotoxins: tales from known and unexplored worlds. Front Microbiol. 7, 561.
  30. Heussner A., Bingle L., Heussner A.H., Bingle L.E.H., 2015. Comparative ochratoxin toxicity: a review of the available data. Toxins. 7, 4253–4282.
  31. Bui-Klimke T.R., Wu F., 2015. Ochratoxin a and human health risk: a review of the evidence. Crit Rev Food Sci Nutr. 55, 1860–1869.
  32. Saeger S.D., Logrieco A., 2017. In: Belgium, Toxins Report from the 1st Mycokey International Conference Global Mycotoxin Reduction in the Food and Feed Chain Held in Ghent. 9, pp.276.
  33. Reddy P., Guthridge K., Vassiliadis S., Hemsworth J., Hettiarachchige I., Spangenberg G., Rochfort S., 2019. Tremorgenic mycotoxins: structure diversity and biological activity. Toxins. 11, 302.
  34. Nouri M.A., Al-Halbosiy M.M., Dheeb B.I., Hashim A.J., 2015. Cytotoxicity and genotoxicity of Gliotoxin on human lymphocytes in vitro, J King Saud Univ Sci. 27, 193–197.
  35. Patel R., Hossain A., German N., Alahmad A., 2018. Gliotoxin penetrates and impairs the integrity of the human blood-brain barrier in vitro. Mycotoxin Res. 34, 257–268.
  36. Doughari J.H., 2015. The occurrence, properties and significance of citrinin mycotoxin, J Plant Pathol Microbiol. 6, 1–6.
  37. Gayathri L., Dhivya R., Dhanasekaran D., Periasamy V.S., Alshatw A.A., Akbarsha M.A., 2015. Hepatotoxic effect of ochratoxin a and Citrinin, alone and in combination, and protective effect of vitamin e: in vitro study in HepG2 cell, Food Chem Toxicol. 83, 151–163.
  38. Barnett L.M.A., Cummings B.S., 2018. Nephrotoxicity and renal pathophysiology: a contemporary perspective, Toxicol Sci. 164, 379–390.
  39. Romero Bernal Á.R., Reynoso C.M., García Londoño V.A., Broggi L.E., Resnik S.L., 2019. Alternaria toxins in Argentinean wheat, bran, and flour. Food Addit Contam Part B Surveill. 12, 24–30.
  40. Nair M.G., 2017. Fumonisins and human health. Ann Trop Paediatr. 18, S47–S52.
  41. Kouzi S.A., Wright N.J.D., Dirks-Naylor A., Uddin M.N., 2018. Fumonisins: effects on human and animal health and mechanisms of toxicity. EC Pharmacol Toxicol. 6, 187–208.
  42. EFSA (2013). Scientific opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J. 11, 3254.
  43. Díaz C.H., Granero A.M., Zon M A., Fernández H., 2018. Sterigmatocystin: a mycotoxin to be seriously considered. Food Chem Toxicol. 118, 460–470.
  44. Yoshinari T., Suzuki Y., Sugita-Konishi Y., Ohnishi T., Terajima J., 2016. Occurrence of beauvericin and enniatins in wheat flour and corn grits on the Japanese market, and their co-contamination with type B trichothecene mycotoxins. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 33, 1620–1626.
  45. Sadiq F.A., Yan B., Tian F., Zhao J., Zhang H., Chen W., 2019. Lactic Acid Bacteria as Antifungal and Anti-Mycotoxigenic Agents: A Comprehensive Review. Compr Rev Food Sci Food Saf. 18, 1403–1436.
  46. Pal S., Singh N., Ansari K. M., 2017. Toxicological effects of patulin mycotoxin on the mammalian system: an overview. Toxicol Res. 6, 764–771.
  47. Vidal A., Ouhibi S., Ghali R., Hedhili A., De Saeger S., De Boevre M., 2019. The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food Chem Toxicol. 129, 249–256.
  48. Wezeman T., Bräse S., Masters K.S., 2015. Xanthone Dimers: A Compound Family which is both common and privileged. Nat Prod Rep. 32, 1–104.
  49. Demasi M., Felicio A.L., Pacheco A.O., Leite H., Lima C., Andrade L.H., 2010. Studies on terrein as a new class of proteasome inhibitors. J Braz Chem Soc. 21, 299–305.
  50. Asfour H.Z., Awan Z.A., Bagalagel A.A., Elfaky M.A., Abdelhameed R.F.A., Elhady S.S., 2019. Large-Scale Production of Bioactive Terrein by Aspergillus terreus Strain S020 Isolated from the Saudi Coast of the Red Sea. Biomolecules. 9(9), 480. 
  51. Ostry V., Toman, J., Grosse Y., Malir F., 2018. Cyclopiazonic acid: 50th anniversary of its discovery, World Mycotoxin J. 11, 135–148.
  52. Okoth S., Boevre M.D., Vidal A., Mavungu J.D.D., Landschoot S., Kyallo M., Njuguna J., Harvey J., De Saeger S., 2018. Genetic and toxigenic variability within Aspergillus flavus population isolated from maize in two diverse environments in Kenya. Front Microbiol. 9, 57.
  53. Sobrova P., Adam V., Vasatkova A., Beklova M., Zeman L., Kizek R., 2010. Deoxynivalenol and its toxicity. Interdisciplinary Toxicol. 3, 94–99.
  54. Danicke S., Winkler J., 2015. Invited review: diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem Toxicol. 84, 225–249.
  55. Robinson S.L., Panaccione D.G., 2015. Diversification of ergot alkaloids in natural and modified fungi. Toxins. 7, 201–218.
  56. Eriksen G.S., Jaderlund K.H., Moldes-Anaya A., Schonheit J., Bernhoft A., Jaeger G., Rundberget T., Skaar I., 2010. Poisoning of dogs with tremorgenic Penicillium toxins. Med Mycol. 48, 188–196.
  57. Vettorazzi A., López de Cerain A., 2016. Chapter 17-Mycotoxins as Food Carcinogens. Environmental Mycology in Public Health. pp. 261–298.
  58. Wu F., Stacy S.L., Kensler T.W., 2013. Global risk assessment of aflatoxins in maize and peanuts: are regulatory standards adequately protective? Toxicol Sci. 135, 251–259.
  59. Awuchi C.G., Amagwula I.O., Priya P., Kumar R., Yezdani U., Khan M.G., 2020. Aflatoxins in foods and feeds: A review on health implications, detection, and control. Bull Environ Pharmacol Life Sci. 9(9), 149-155.
  60. Cherkani-Hassani A., Mojemmi B., Mouane N., 2016. Occurrence and levels of mycotoxins and their metabolites in human breast milk associated to dietary habits and other factors: a systematic literature review, 1984–2015. Trends Food Sci Technol. 50, 56–69.
  61. Benkerroum N., 2016. Mycotoxins in dairy products: a review. Int. Dairy J. 62, 63–75.
  62. Alshannaq A., Yu J.H., Alshannaq A., Yu J.H., 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health. 14, E632.
  63. Dellafiora L., Dall’Asta C., 2017. Forthcoming challenges in mycotoxins toxicology research for safer Food-A need for multi-omics approach. Toxins. 9, E18.
  64. Flores M., González-Peñas E., 2016. An LC-MS/MS method for multi- mycotoxin quantification in cow milk. Food Chem. 218, 378–385.
  65. International Agency for Research on Cancer, 2012. Aflatoxins IARC Monographs. Int Agency Res Cancer 100, 225–248.
  66. Wild C.P., Gong Y.Y., 2009. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 31, 71–82.
  67. Ostry V., Malir F., Toman J., Grosse, Y., 2017. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res. 33, 65–73.
  68. Dumenco L., Oguey D., Wu J., Messier N., Fausto N., 1995. Introduction of a murine p53 mutation corresponding to human codon 249 into a murine hepatocyte cell line results in growth advantage, but not in transformation. Hepatology. 22, 1279–1288.
  69. Rotimi O., Rotimi S., Uchechukwu Duru C., Ebebeinwe O., Obhio Abiodun A., Oluwamayowa Oyeniyi B., 2017. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep. 4, 408–414.
  70. Hamid A.S., Tesfamariam S.G., Zhang Y., Zhang Z.G., 2013. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention (Review). Oncol Lett. 5, 1087–1092.
  71. Nurul Adilah Z., Liew W.P.P., Mohd Redzwan S., Amin I., 2018. Effect of high protein diet and probiotic lactobacillus casei shirota supplementation in aflatoxin B(1)-Induced rats. BioMed Res Int. 2018, 9568351.
  72. Magnussen A., Parsi M.A., 2013. Aflatoxins, hepatocellular carcinoma and public health. World J Gastroenterol. 19, 1508–1512.
  73. Dharumadurai D., Shanmugapriya S., Thajuddin N., Annamalai P., 2011. “Aflatoxins and Aflatoxicosis in Human and Animals,” in Aflatoxins - Biochemistry and Molecular Biology, ed. R. G. Guevara-Gonzalez, (Rijeka: Intech Open Access publishers), pp 285–304.
  74. Benedict K., Chiller T.M., Mody R.K., 2016. Invasive fungal infections acquired from contaminated food or nutritional supplements: a review of the literature. Foodborne Pathog Dis. 13, 343–349.
  75. Khlangwiset P., Shephard G., Wu F., 2011. Aflatoxins and growth impairment: a review. Crit Rev Toxicol. 41, 740–755.
  76. Liew W.P.P., Mohd-Redzwan S., 2018. Mycotoxin: its impact on gut health and microbiota. Front Cell Infect Microbiol. 8, 60.

77.Wu H.C., Santella R., 2012. The role of aflatoxins in hepatocellular carcinoma. Hepatitis Monthly. 12, e7238–e7238.

  1. Saha N., Wu F., 2019. Risk assessment of aflatoxin-related liver cancer in Bangladesh. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 36, 320–326.
  2. Awuchi C.G., Owuamanam I.C., Ogueke C.C., Hannington T., 2020. The Impacts of Mycotoxins on the Proximate Composition and Functional Properties of Grains. Eur Acad Res. 8(2), 1024-1071.
  3. Ostry V., Malir F., Ruprich J., 2013. Producers and important dietary sources of ochratoxin a and citrinin, Toxins 5(9), 1574–1586.
  4. Zhu L., Zhang B., Dai Y., Li H., Xu W., Zhu L., 2017. A review: epigenetic mechanism in ochratoxin a toxicity studies. Toxins. 9, 113.
  5. Pfohl-Leszkowicz A., Manderville R.A., 2007. Ochratoxin a: an overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res. 51, 61–99.
  6. Reddy L., Bhoola K., Reddy L., Bhoola K., 2010. Ochratoxins-food contaminants: impact on human health. Toxins. 2(4), 771–779.
  7. Malir F., Ostry V., Pfohl-Leszkowicz A., Malir J., Toman J., 2016. Ochratoxin A: 50 years of research. Toxins. 8, E191.
  8. Barikbin B., Allahresani A., Khosravi R., Khodadadi M., 2015. Detection of aflatoxin M1 in dairy products marketed in Iran, Health Scope: International Quarterly J. 4(1), e18925.
  9. Calvo A.M., Cary J.W., 2015. Association of fungal secondary metabolism and sclerotial biology. Front Microbiol. 6, 62.
  10. Kozák L., Szilágyi Z., Tóth L., Pócsi I., Molnár I., 2019. Tremorgenic and neurotoxic paspaline-derived indole-diterpenes: biosynthetic diversity, threats and applications. Appl Microbiol Biotechnol. 103, 1599–1616.
  11. Gardiner D.M., Cozijnsen A.J., Wilson L.M., Pedras M.S.C., Howlett B.J., 2004. The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus leptosphaeriamaculans, Mol Microbiol. 53, 1307–1318.
  12. Gardiner D.M., Howlett B.J., 2005. Bioinformatics and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus, FEMS Microbiol Lett. 248, 241–248.
  13. Lewis R.E., Wiederhold N.P., Chi J., Han X.Y., Komanduri K.V., Kontoyiannis D.P., 2005. Detection of gliotoxin in experimental and human aspergillosis. Infect Immun. 73, 635–637.
  14. Samson R., Peterson S., Frisvad J., Varga J., 2011. New species in Aspergillus section terrei, Stud Mycol. 69, 39–55.
  15. Culig B., Berardi M., Bosnir J., Serdar S., Lasic D., Racs A., Galic A., 2017. Presence of Citrinin in grains and its possible health effects. Afr J Tradit Complement Altern Med. 14, 22–30.
  16. Logrieco A., Moretti A., Solfrizzo M., 2009. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2, 129–140.
  17. Sivagnanam K., Komatsu E., Rampitsch C., Perreault H., Gräfenhan T., 2017. Rapid screening of Alternaria mycotoxins using MALDI-TOF mass spectrometry. J Sci Food Agric. 97, 357–361.
  18. European Food Safety Authority, 2011. Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J. 10, 2407.
  19. Zwickel T., Klaffke H., Richards K., Rychlik M., 2016. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J Chromatogr A. 2016, 1455, 74–85.
  20. Agriopoulou S., Stamatelopoulou E., Varzakas T., 2020. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods. 9, 137.
  21. Sanzani S.M., Gallone T., Garganese F., Caruso A.G., Amenduni M., Ippolito A., 2019. Contamination of fresh and dried tomato by Alternaria toxins in southern Italy. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 36, 789–799.
  22. Walravens J., Mikula H., Rychlik M., Asamd S., Ediagea E.N., Di Mavungua J.D., Landschoote A.V., 2014. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J Chromatogr A. 1372, 91–101.
  23. Mogensen J.M., Nielsen K., Samson R., Frisvad J., Thrane U., 2009. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiol. 9, 281.
  24. Månsson M., Klejnstrup M.L., Phipps R.K., Nielsen K.F., Frisvad J.C., Gotfredsen C.H., 2010. Isolation and NMR characterization of fumonisin B2 and a new fumonisin b6 from Aspergillus niger. J Agric Food Chem. 58, 949–953.
  25. Gherbawy Y., Elhariry H., Kocsubé S., Bahobial A., Deeb B., El Altalhi A., 2015. Molecular characterization of black Aspergillus Species from Onion and their potential for ochratoxin A and Fumonisin B2 Production. Foodborne Pathog Dis. 12, 414–423.
  26. Varga J., Kocsubé S., Szigeti G., Man V., Tóth B., Vágvölgyi C., 2012. Black Aspergilli and fumonisin contamination in onions purchased in Hungary. Acta Aliment. 41, 414–423.
  27. Logrieco A.F., Haidukowski M., Susca A., Mulè G., Munkvold G.P., Moretti A., 2014. Aspergillus section Nigri as contributor of fumonisin B2 contamination in maize. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 31, 149–155.
  28. Kamle M., Mahato D.K., Devi S., Lee K.E., Kang S.G., Kumar P., 2019. Fumonisins: impact on agriculture, food, and human health and their management strategies. Toxins. 11, E328.
  29. Susca A., Proctor R.H., Butchko R.A.E., Haidukowski M., Stea G., Logrieco A., 2014. Variation in the fumonisin biosynthetic gene cluster in fumonisin- producing and nonproducing black aspergilli. Fungal Genet Biol. 73, 39–52.
  30. Logrieco A.F., Ferracane R., Cozzi G., Haidukowsky M., Susca A., Mulè G., 2011. Fumonisin B2 by Aspergillus niger in the grape-wine chain: an additional potential mycotoxicological risk. Ann Microbiol. 61, 1–3.
  31. Pfeiffer E., Fleck S.C., Metzler M., 2014. Catechol Formation: a novel pathway in the metabolism of sterigmatocystin and 11- Methoxysterigmatocystin. Chem Res Toxicol. 27, 2093–2099.
  32. Tong P.Z., Zhang G.J., Zhang X.H., Yan X., Wang J.L., 2013. Effects of sterigmatocystin on esophageal epithelium and experimental reflux esophagitis in rats. Mol Med Rep. 8, 1043–1048.
  33. Sant’Ana A.S., Simas R.C., Almeida C.A.A., Cabral E.C., Rauber R.H., Mallmann C.A., 2010. Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva. Int J Food Microbiol. 142, 156–163.
  34. Puel O., Galtier P., Oswald I. P., 2010. Biosynthesis and toxicological effects of patulin. Toxins. 2, 613–631.
  35. Frisvad J.C., 2018. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J. 11, 73–100.
  36. Mahfoud R., Maresca M., Garmy N., Fantini J., 2002. The mycotoxin patulin alters the barrier function of the intestinal epithelium: mechanism of action of the toxin and protective effects of glutathione. Toxicol Appl Pharmacol. 181, 209–218.
  37. Awuchi C.G., Owuamanam C.I., Ogueke C.C., Igwe V.S., 2019. Evaluation of Patulin Levels and impacts on the Physical Characteristics of Grains. Int J Adv Acad Res. 5 (4), 10 – 25.
  38. Wichmann G., Herbarth O., Lehmann I. 2002. The mycotoxins citrinin, gliotoxin, and patulin affect interferon-γ rather than interleukin-4 production in human blood cells. Environ Toxicol. 17, 211–218.
  39. Masters K.S., Bräse S., 2012. Xanthones from Fungi, lichens, and Bacteria: the natural products and their synthesis. Chem Rev. 112, 3717–3776.
  40. Zhang W., KrohnK., Ullah Z., Flörke U., Pescitelli G., Di Bari L., Sandor A., 2008. New mono- and dimeric members of the secalonic acid family: blennolides a–g isolated from the fungus blennoria sp. Chem Eur J. 14, 4913–4923.
  41. Zhai A., Zhu X., Wang X., Chen R., Wang H., 2013. Secalonic acid a protects dopaminergic neurons from 1-methyl-4-phenylpyridinium MPP + -Induced cell death via the mitochondrial apoptotic pathway. Eur J Pharmacol. 71, 58–67.
  42. Qin T., Porco J.A., 2014. Total syntheses of secalonic acids a and d. Angewandte Chemie. 126, 3171–3174.
  43. Barbero M., Artuso E., Prandi C., 2018. Fungal anticancer metabolites: synthesis towards drug discovery. Curr Med Chem. 25(2), 141-185.
  44. Ganapathy D., Reiner J.R., Loeffler L.E., Ma L., Gnanaprakasam B., Niepoetter B., Koehne I., 2015. ChemInform abstract: enantioselective total synthesis of secalonic acid E. Cheminform 47, 15.
  45. Flieger M., Stodůlkov´a, E., Wyka, S.A., ˇCerný, J., Grob´arov´a, V., Píchov´a, K., Novak, P., et al., 2019. Ergochromes: heretofore neglected side of ergot toxicity. Toxins. 11(8), 439.
  46. Guru S.K., Pathania A.S., Kumar S., Ramesh D., Kumar M., Rana S., Kumar A., 2015. Secalonic Acid-D represses HIF1/VEGF-Mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade. Cancer Res. 75(14), 2886–2896.
  47. Cho H.J., Jung M.J., Woo S., Kim J., Lee E.S., Kwon Y., Younghwa N., 2010. New benzoxanthone derivatives as topoisomerase inhibitors and DNA cross-linkers. Bioorg Med Chem. 18(3),1010–1017.
  48. Boruta T., Bizukojc M., 2014. Culture-based and sequence-based insights into biosynthesis of secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol. 175, 53–62.
  49. Zaehle C., Gressler M., Shelest E., Geib E., Hertweck C., Brock M., 2014. Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity. Chem Biol. 21, 719–731.
  50. Arakawa M., Someno T., Kawada M., Lkeda D., 2008. A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis. J Antibiot. 61, 442–448.
  51. Liao W.Y., Shen C.N., Lin L.H., Yang Y.L., Hsin-Ying H., Jing-Wei C., Kuo S.C., 2012. Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J Nat Prod. 75, 630–635.
  52. Hiroki M., Kazuhiro O., Daisuke Y., Toki T., Kyouta M., Satoshi Y., Koichi M., 2014. Synthetic + - terrein suppresses Interleukin-6/Soluble Interleukin-6 receptor induced-secretion of vascular endothelial growth factor in human gingival fibroblasts. Bioorg Med Chem. 22, 5338–5344.
  53. Maragos C.M., Sieve K.K., Bobell J., 2017. Detection of cyclopiazonic acid CPA in maize by immunoassay. Mycotoxin Res. 33,157–165.
  54. Heperkan D., Somuncuoglu S., Karbancioglu-Güler F., Mecik N., 2012. Natural contamination of cyclopiazonic acid in dried figs and co-occurrence of aflatoxin. Food Cont. 23, 82–86.
  55. Hariprasanna K., 2015. Genetic improvement in kodo millet, in: V.A. Tonapi, J.V. Patil (Eds.), Book Millets: Ensuring Climate Resilience and Nutritional Security, Daya Publishing House, New Delhi.
  56. Rasheed U., Wu H., Wei J., Ou X., Qin P., Yao X., Chen H., 2019. A polyphasic study of Aspergillus section Flavi isolated from corn in Guangxi, China- a hot spot of aflatoxin contamination. Int J Food Microbiol. 310, 108307.
  57. Goron T.L., Raizada M.N., 2015. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci. 6, 157.
  58. Dwivedi S., Upadhyaya H., Senthilvel S., Hash C.T., Fukunaga K., Diao X., Prasad M., 2012. Millets: genetic and genomic resources. Plant Breed Rev. 35, 247–375.
  59. Deabes M.M.Y., Amara H.A., Damaty E.L.M., Rowayshed G.H., 2018. Natural Co-occurrence of aflatoxins, cyclopiazonic acid, and their production by Aspergillus flavus isolates from corn grown in Egypt. Adv Clin Toxicol. 3(3), 136.
  60. Maragos C., 2018. Complexation of the mycotoxin cyclopiazonic acid with lanthanides yields luminescent products. Toxins. 10, 285.
  61. Sugiharto S., 2019. A review of filamentous fungi in broiler production. Ann Agric Sci. 64, 1–8.
  62. King E.D., Bassi A.B., Ross D.C., Druebbisch B., 2011. An industry perspective on the use of “Atoxigenic” strains of Aspergillus flavus as biological control agents and the significance of cyclopiazonic acid. Toxin Rev. 30, 33–41.
  63. Dupont J., Dequin S., Giraud T., Tacon F., Marsit S., Ropars J., Richard F., 2017. Fungi as a source of food. Microbiol Spectrum. 5(2), 30.
  64. Wegulo S.N., 2012. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins. 4, 1157–1180.
  65. Audenaert K., Vanheule A., Hofte M., Haesaert G., 2014. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins. 6, 1–19.
  66. Vaclavikova M., Malachova A., Veprikova Z., Dzuman Z., Zachariasova M., Hajslova J., 2013. “Emerging” mycotoxins in cereals processing chains: Changes of enniatins during beer and bread making. Food Chem. 136, 750–757.
  67. European Food Safety Authority, 2014. Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 12, 3802.
  68. Gruber-Dorninger C., Novak B., Nagl V., Berthiller F., 2017. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J Agric Food Chem. 65, 7052–7070.
  69. Fraeyman S., Croubels S., Devreese M., Antonissen G., 2017. Emerging fusarium and alternaria mycotoxins: Occurrence, toxicity and toxicokinetics. Toxins. 9, 228.
  70. Luz C., Saladino F., Luciano F.B., Mañes J., Meca G., 2017. Occurrence, toxicity, bioaccessibility and mitigation strategies of beauvericin, a minor Fusarium mycotoxin. Food Chem Toxicol. 107, 430–439.
  71. Stanciu O., Juan C., Miere D., Loghin F., Mañes J., 2017. Presence of enniatins and beauvericin in Romanian wheat samples: From raw material to products for direct human consumption. Toxins. 9, 9060189.
  72. Varga E., Wiesenberger G., Hametner C., Ward T.J., Dong Y., Schöfbeck D., McCormick S., 2015. New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ Microbiol. 17, 2588–2600.
  73. Venkatesh N., Keller N.P., 2019. Mycotoxins in conversation with bacteria and fungi. Front Microbiol. 2019, 10, 201900403.
  74. Agriopoulou S. 2016. Enniatins: An Emerging Food Safety Issue. EC Nutr. 3, 1142–1146.
  75. Gunter A.B., Hermans A., Bosnich W., Johnson D.A., Harris L.J., Gleddie S., 2016. Protein engineering of Saccharomyces cerevisiae transporter Pdr5p identifies key residues that impact Fusarium mycotoxin export and resistance to inhibition. Microbiology Open. 5, 979–991.
  76. Wallwey C., Li S.M., 2011. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Natural Product Rep. 28, 496–510.
  77. Rimar Y., Rimar D., 2003. Witches saints and other diseases. Harefuah. 142, 383–386396.
  78. Craig A.M., Klotz J.L., Duringer J.M., 2015. Cases of ergotism in livestock and associated ergot alkaloid concentrations in feed. Frontiers Chem. 3, 8.
  79. Klotz J.L., 2015. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins. 7, 2801–2821.
  80. Gil-Serna J., Vázquez C., Patiño B., 2019. Mycotoxins: Toxicology. Reference Module in Food Sciences,
  81. Marín S., Ramos A.J., Cano-Sancho G., Sanchis V., 2013. Mycotoxins: occurrence, toxicology and exposure assessment. Food Chem Toxicol. 60, 218–237.
  82. Wang H., Zhai N., Chen Y., Fu C., Huang K., 2018. OTA induces intestinal epithelial barrier dysfunction and tight junction disruption in IPEC-J2 cells through ROS/Ca2+-mediated MLCK activation. Environ Pollut. 242, 106–112.
  83. Assunção R., Pinhão M., Loureiro S., Alvito P., Silva M.J., 2019. A multi- endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicol Lett. 313, 120–129.
  84. Alassane-Kpembi I., Schatzmayr G., Taranu I., Marin D., Puel O., Oswald I.P., 2017. Mycotoxins co-contamination: methodological aspects and biological relevance of combined toxicity studies. Crit Rev Food Sci Nutr. 57, 3489–3507.
  85. Klarić M.S., Rašić D., Peraica M., 2013. Deleterious effects of mycotoxin combinations involving ochratoxin A. Toxins. 5, 1965–1987.
  86. Erdoğan A., Ghimire D., Gürses M., Çetin B., Baran A., 2018. Patulin contamination in fruit juices and its control measures, Eur J Sci Technol. 14, 39–48.
  87. Hernández-Martínez R., Navarro-Blasco I., 2010. Aflatoxin levels and exposure assessment of Spanish Infant Cereals. Food Addit Contam: Part B Surveill. 3(4), 275–288.
  88. Lombard M.J., 2014. Mycotoxin exposure and infant and young child growth in Africa: what do we know? Ann Nutr Metab. 64, 42–52.
  89. Adejumo O., Atanda O., Raiola A., Somorin Y., Bandyopadhyay R., Ritieni A., 2013. Correlation between aflatoxin M1 content of breast milk, dietary exposure to aflatoxin B1 and socioeconomic status of lactating mothers in Ogun State, Nigeria. Food Chem Toxicol. 56, 171–177.
  90. Erceg, S., Mateo E., Zipancic I., Rodríguez Jiménez F., Pérez Aragó M., Jiménez M., 2019. Assessment of toxic effects of ochratoxin a in human embryonic stem cells. Toxins. 11, E217.
  91. El-Khoury D., Fayjaloun S., Nassar M., Sahakian J., Aad P.Y., 2019. Updates on the effect of mycotoxins on male reproductive efficiency in mammals. Toxins. 11, E515.
  92. International Agency for Research on Cancer, 2015. “Mycotoxin Control in Low- and middle Income Countries, Chapter 5,” in Fetal and Neonatal Toxicities of Aflatoxins and Fumonisins, eds C. P. Wild, J. D. Miller, and J. D. Groopman, (Lyon: International Agency for Research on Cancer).
  93. Kanora A., Maes D., 2009. The role of mycotoxins in pig reproduction: a review. Vet Med. 54, 565–576.
  94. Ortiz J., Jacxsens L., Astudillo G., Ballesteros A., Donoso S., Huybregts L., De Meulenaer B., 2018. Multiple mycotoxin exposure of infants and young children via breastfeeding and complementary/weaning foods consumption in Ecuadorian highlands. Food Chem Toxicol. 118, 541–548.
  95. Watson S., Moore S.E., Darboe M.K., Chen G., Tu Y.K., Huang Y.T., 2018. Impaired growth in rural Gambian infants exposed to aflatoxin: a prospective cohort study. BMC Public Health. 18, 1247.
  96. Khlangwiset P., Shephard G., Wu F., 2011. Aflatoxins and growth impairment: a review. Crit Rev Toxicol. 41, 740–755.
  97. Lumsangkul C., Chiang H.I., Lo N.W., Fan, Y.K., Ju J.C., 2019. Developmental toxicity of mycotoxin fumonisin b1 in animal embryogenesis: an overview. Toxins. 11, 114.
  98. Herrera M., Bervis N., Carramiñana J.J., Juan T., Herrera A., Ariño A., 2019. Occurrence and exposure assessment of aflatoxins and deoxynivalenol in cereal-based baby foods for infants. Toxins. 11, 150.
  99. Al-Jaal B.A., Jaganjac M., Barcaru A., Horvatovich P., Latiff A., 2019. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: a systematic literature review, 2001–2018. Food Chem Toxicol. 129, 211–228.
  100. Chen C., Mitchell N.J., Gratz J., Houpt E.R., Gong Y., Egner P.A., 2018. Exposure to aflatoxin and fumonisin in children at risk for growth impairment in rural Tanzania. Environ Int. 115, 29–37.
  101. Tufail T., Ijaz A., Noreen S., Arshad M.U., Gilani S.A., Bashir S., Din A., Shahid M.Z., 2021. Pathophysiology of Obesity and Diabetes. In C Egbuna, S Hassan (Ed.). Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer, and Diabetes. Switzerland. Springer International Publishing.
  102. Yasmin I., Khan W.A., Naz S., Iqbal M.W., Awuchi C.G., Egbuna C., Hassan S., 2021. Etiology of Obesity, Cancer, and Diabetes. In C Egbuna, S Hassan (Ed.). Dietary Phytochemicals: A Source of Novel Bioactive Compounds for the Treatment of Obesity, Cancer, and Diabetes. Switzerland. Springer International Publishing.
  103. Sobral M.M.C., Faria M.A., Cunha S.C., Miladinovic B., Ferreira I.M., 2019. Transport of mycotoxins across human gastric NCI–N87 and intestinal Caco-2 cell models. Food Chem Toxicol. 131, 110595.
  104. Probst C., Njapau H., Cotty P.J., 2007. Outbreak of an acute aflatoxicosis in kenya in 2004: identification of the causal agent. Appl Environ Microbiol. 73, 2762–2764.
  105. Gallo A., Giuberti G., Frisvad J., Bertuzzi T., Nielsen K., 2015. Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins. 7, 3057–3111.
  106. Pócsi I., Kiraly G., Banfalvi G., 2018. Antineoplastic potential of mycotoxins. Acta Microbiol Immunol Hung. 65, 267–307.
  107. Escrivá L., Font G., Manyes L., Berrada H., 2017. Studies on the presence of mycotoxins in biological samples: an overview. Toxins. 9, E251.
  108. Peraica M., Radic´ B., Lucić A., Pavlovic´ M., 1999. Toxic effects of mycotoxins in humans. Bull World Health Organ. 77, 754–766.
  109. Shephard G., 2008. Impact of mycotoxins on human health in developing countries. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 25, 146–151.
  110. Kumar P., Mahato D.K., Kamle M., Mohanta T.K., Kang S.G., 2017. Aflatoxins: a global concern for food safety, human health and their management. Front Microbiol. 7, 2170.
  111. Arroyo-Manzanares N., Rodríguez-Estévez V., Arenas-Fernández P., García-Campaña A.M., Gámiz-Gracia L., 2019. Occurrence of mycotoxins in swine feeding from spain. Toxins. 11, 1–13.
  112. Udomkun P., Wiredu A.N., Nagle M., Müller J., Vanlauwe B., Bandyopadhyay R., 2017. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application – A review. Food Cont. 76, 127–138.
  113. Ehrlich K., 2014. Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations. Front Microbiol. 5, 50.
  114. Tasheva-Petkova Y.R., Christova-Bagdassarian V.L., Tachev A.K., Atanassova M.S., 2014. Harmonize approaches to analysis and risk assessment of mycotoxins in foodstuffs. Int J Adv Res J. 2, 1097–1106.
  115. Paterson R., Venâncio A., Lima N., Guilloux-Bénatier M., Rousseaux S., 2017. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res Int. 103, 478–491.
  116. Kabak B., Dobson A., Var I., 2006. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit Rev Food Sci Nutr. 46, 593–619.
  117. Berthiller F., Crews C., Dall’Asta C., Saeger S., De Haesaert G., 2013. Masked mycotoxins: a review. Mol Nutr Food Res. 57, 165–186.
  118. Mahuku G., Nzioki H.S., Mutegi C., Kanampiu F., Narrod C., Makumbi D., 2019. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Food Cont. 96, 219–226.
  119. Kagot V., Okoth S., De Boevre M., De Saeger S., 2019. Biocontrol of Aspergillus and Fusarium mycotoxins in Africa: benefits and limitations. Toxins. 11, 1–9.
  120. Pfliegler W., Tünde P., Pócsi I., 2015. Mycotoxins - prevention and decontamination by yeasts. J Basic Microbiol. 55, 805–818.
  121. Dana M.A., Kordbacheh P., Ghazvini R.D., Moazeni M., Nazemi L., Rezaie S., 2018. Inhibitory effect of vitamin C on Aspergillus parasiticus growth and aflatoxin gene expression. Curr Med Mycol. 4, 10–14.
  122. Atehnkeng J., Ojiambo P., Cotty P., Bandyopadhyay R., 2014. Field efficacy of a mixture of atoxigenic Aspergillus flavus Link: FR vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol Cont. 72, 62–70.
  123. Zain M.E., 2011. Impact of mycotoxins on humans and animals. J Saudi Chem Soc. 15, 129–144.
    201. Fandohan P., Zoumenou D., Hounhouigan D.J., Marasas W.F.O., Wingfield M.J., Hell K., 2005. Fate of aflatoxins and fumonisins during the processing of maize into food products in Benin. Int J Food Microbiol. 98, 249–259.
  124. Williams S.B., Baributsa D.,  Woloshuk C., 2014. Assessing purdue improved crop storage (PICS)  bags  to  mitigate  fungal  growth and aflatoxin contamination. J Stored Prod Res. 59, 190–196.
  125. Khlangwiset P., Wu F., 2010. Costs and efficacy of public health interventions to reduce aflatoxin-induced human disease. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 27, 998–1014.
  126. Adda C., Atachi P., Hell K., Tamo M., 2011. Potential use of the bushmint, hyptis suaveolens, for the control of infestation by the pink stalk borer, Sesamia calamistis on Maize in Southern Benin, West Africa. J Insect Sci. 11, 33.
  127. Yang J., Li J., Jiang Y., Duan X., Qu H., Yang B., 2014. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Crit Rev Food Sci Nutr. 54, 64–83.
  128. Herzallah S., Alshawabkeh K., Al Fataftah A.R., 2008. Aflatoxin decontamination of artificially contaminated feeds by sunlight, -radiation, and microwave heating. J Appl Poult Res. 17, 515–521.
  129. Karlovsky P., Suman M., Berthiller F., De Meester J., Eisenbrand G., Perrin I., 2016. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 32, 179–205.
  130. Jalili M., Jinap S., Noranizan A., 2010. Effect of gamma radiation on reduction of mycotoxins in black pepper. Food Cont. 21, 1388–1393.
  131. Di Stefano V., Pitonzo R., 2014. Effect of gamma irradiation on aflatoxins and ochratoxin a reduction in almond samples. J Food Res. 3, 113.
  132. Roberts P.B., 2016. Food irradiation: standards, regulations and world-wide trade. Radiat Phys Chem. 129, 30–34.
  133. Wang F., Xie F., Xue X., Wang Z., Fan B., Ha Y., 2011. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B1 in methanol–water solution. J Hazard Mater. 192, 1192–1202.
  134. Yang Q., 2019. “Decontamination of Aflatoxin B1,” in Aflatoxin B1 Occurrence, Detection and Toxicological Effects. London: IntechOpen. Available at:
  135. Wu F., Khlangwiset P., 2010. Health economic impacts and cost- effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food Addit Contam Part A Chem Anal Cont Expo Risk Assess. 7, 496–509.
  136. Bryła M., Waśkiewicz A., Szymczyk K., Jędrzejczak R., 2017. Effects of pH and temperature on the stability of fumonisins in Maize Products. Toxins. 9, 88.
  137. Karaca H., Velioglu Y.S., 2014. Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley. Postharvest Biol Technol. 88, 46–53.
  138. Komala V.V., Ratnavathi C.V., Vijay Kumar B.S., Das I.K., 2012. Inhibition of aflatoxin B1 production by an antifungal component, eugenol in stored sorghum grains. Food Cont. 26, 139–146.
  139. Sultana B., Naseer R., Nigam P., 2015. Utilization of agro-wastes to inhibit aflatoxins synthesis by Aspergillus parasiticus: a biotreatment of three cereals for safe long-term storage. Bioresour Technol. 197, 443–450.







  1. Quiles J.M., Manyes L., Luciano F., Mañes J., Meca G., 2015. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust. Food Chem Toxicol. 83, 222–228.
  2. Tsitsigiannis D.I., Dimakopoulou M., Antoniou P.P., Tjamos E.C., 2012. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol Mediterr. 51, 158–174.
  3. Hope J., 2013. A Review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. Sci World J. 2013, 1–20.
  4. Rea W.J., Pan Y., Griffiths B., 2009. The treatment of patients with mycotoxin-induced disease. Toxicol Ind Health. 25, 711–714.
  5. Okpala C.O.R., 2019. Towards enhancing the detection of adulteration in bioactive food products. J Food Bioact. 6, 6-9.
  6. Okpala C.O.R., Korzeniowska M., 2021. Understanding the Relevance of Quality Management in Agro-food Product Industry: From Ethical Considerations to Assuring Food Hygiene Quality Safety Standards and Its Associated Processes. Food Rev Int. 1-74.
Volume 12, Issue 3
July 2022
Pages 427-464
  • Receive Date: 30 August 2021
  • Revise Date: 18 October 2021
  • Accept Date: 22 January 2022
  • First Publish Date: 23 January 2022