Comparative Studies between Conventional Techniques and Green Chemistry to Synthesis of Novel Piperidinium Salts Ionic Liquids (PBSILs)

Document Type : Original Article


1 Department of Medical Laboratories Technologies, Al-Noor University College, Barttella, Mosul, Iraq

2 Department of Chemistry, College of Science, University of Mosul, Ninevah, Iraq

3 Department of Dentistry, Al-Noor University College, Barttella, Mousl, Iraq

4 Department of Chemistry, College of Education for pure science, University of Mosul. Ninevah, Iraq


Comparative studies between conventional technique, method (A) and green chemistry (microwave irradiation) , method (B) to synthesis of four novel unsymmetrical alkyl piperidinium salts ionic liquids (PBSILs) by the addition of alkyl halides (methyl or allyl) to piperidine  with yields more than (90%) in method (A) and less than (70%) in method (B) respectively with decrease reaction time. Theses novel organic salts are characterized by elemental analysis, 1H NMR, FTIR and mass spectrometry.


  1. Raoof M.Y., Saied M.Sh., Al Gawady M.S., 1970. 2-Phenylchroman-4-one as Synthone in Synthesis of New Five and Six Membered Rings Heterocyclic Compounds. Journal of Education and Science. 24(4), 50-59.‏
  2. Posada P., Brana M.F., Villarino A.L., Dominguez V., Ortuno I., Martínez C., 2011. Synthesis of new vinylpyridinium salts. Journal of Heterocyclic Chemistry. 48(3), 549-554.‏
  3. Okazaki K., Maeda T., Nagamune H., Manabe Y., Kourai H., 1997. Synthesis and antimicrobial characteristics of 4, 4'-(α, ω-polymethylenedithio) bis (1-alkylpyridinium iodide) s. Chemical and Pharmaceutical Bulletin. 45(12), 1970-1974‏.
  4. Alptüzün V., Parlar S., Taşlı H., Erciyas E., 2009. Synthesis and antimicrobial activity of some pyridinium salts. Molecules. 14(12), 5203-5215.‏
  5. Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L., 1982. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry. 21(3), 1263-1264.‏
  6. Baudequin C., Brégeon D., Levillain J., Guillen F., Plaquevent J.C., Gaumont A.C., 2005. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron: Asymmetry. 16(24), 3921-3945.‏
  7. Levillain J., Dubant G., Abrunhosa I., Gulea M., Gaumont A.C., 2003. Synthesis and properties of thiazoline based ionic liquids derived from the chiral pool. Chemical Communications. 23, 2914-2915.‏
  8. You W., Ganley J.M., Ernst B.G., Peltier C.R., Ko H.Y., DiStasio R.A., Knowles R.R., Coates G.W., 2021. Expeditious synthesis of aromatic-free piperidinium-functionalized polyethylene as alkaline anion exchange membranes. Chemical Science. 12(11), 3898-3910.‏
  9. Badrey M.G., Gomha S.M., 2012. 3-Amino-8-hydroxy-4-imino-6-methyl-5-phenyl-4, 5-dihydro-3H-chromeno [2, 3-d] pyrimidine: An effecient key precursor for novel synthesis of some interesting triazines and triazepines as potential anti-tumor agents. Molecules. 17(10), 11538-11553.‏
  10. Khadilkar B.M., Rebeiro G.L., 2002. Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel. Organic Process Research & Development. 6(6), 826-828.‏
  11. Messali M., 2016. A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids. Arabian Journal of Chemistry. 9, S564-S569.‏
  12. Abdullah L.W., Saied S.M., Saleh M.Y., 2021. Deep eutectic solvents (Reline) and Gold Nanoparticles Supported on Titanium Oxide (Au–TiO2) as New Catalysts for synthesis some substituted phenyl (substituted-3-phenyloxiran) methanone Enantioselective Peroxidation. Egyptian Journal of Chemistry. 64(8), 4381-4389.‏
  13. Sdeek G.T., Mauf R.M., Saleh M.Y., 2021. Synthesis and Identification of some new Derivatives Oxazole, Thiazole and Imidazol from Acetyl Cysteine. Egyptian Journal of Chemistry. 71(12), 7465-7471.
  14. Hamdoon A.M., Al-Iraqi M.A., Saleh M.Y., 2021. Synthesis of Some Multi-cyclic Sulfhydryl Donor Compounds Containing 1, 2-dithiol-3-thione moiety. Egyptian Journal of Chemistry, (Article In Press).
  15. Aldahham B.J., Al-Khafaji K., Saleh M.Y., Abdelhakem A.M., Alanazi A.M., Islam M.A., 2020. Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: a pharmacoinformatics study. Journal of Biomolecular Structure and Dynamics. 1-8.‏
  16. Saleh M.Y., Ayoub A.I., 2014. Synthesis of new derivatives of 2 – chloro – 3 – formyl - 1, 8-naphthyridine. European Journal of Chemistry. 5(3), 475-480.‏
  17. Lava K., Binnemans K., Cardinaels T., 2009. Piperidinium, piperazinium and morpholinium ionic liquid crystals. The Journal of Physical Chemistry B. 113(28), 9506-9511.‏

18.Albalawi A.H., El-Sayed W.S., Aljuhani A., Almutairi S.M., Rezki N., Aouad M.R., Messali M., 2018. Microwave-assisted synthesis of some potential bioactive imidazolium-based room-temperature ionic liquids. Molecules. 23(7), 1727.‏

  1. Winstead A.J., Nyambura G., Matthews R., Toney D., Oyaghire S., 2013. Synthesis of quaternary heterocyclic salts. Molecules. 18(11), 14306-14319.‏
  2. Burke J.R., Frey P.A., 1996. Correlation of electronic effects in N-alkylnicotinamides with NMR chemical shifts and hydride transfer reactivity. The Journal of Organic Chemistry. 61(2), 530-533.‏‏
  3. Hesse M., Meier H., Zeeh B., 2008. Spectroscopic methods in organic chemistry. Thieme/Houben-Weyl Series.‏
  4. Silverstein R.M., Bassler G.C., 1962. Spectrometric identification of organic compounds. Journal of Chemical Education. 39(11), 546.‏


Volume 11, Issue 4
October 2021
Pages 451-456
  • Receive Date: 30 August 2021
  • Revise Date: 30 November 2021
  • Accept Date: 27 November 2021
  • First Publish Date: 27 November 2021