Evaluation of Anticancer and Anti-bacterial Effects of Silver Nanoparticles Synthesized by Origanum majoranaL. Extract on Cancer Cells MCF-7, HeLa and A549

Document Type : Original Article


Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran



Origanum majorana L. is an annual, sometimes biennial herbaceous plant with straight stems and oval opposite branches and leaves. This plant is useful in traditional medicine and is used to treat gastrointestinal diseases, rheumatism and infections. This research investigated the antimicrobial effects and toxicity of Silver nanoparticles synthesized using the extract of the medicinal plant O. majorana L., on 3 cancer cell lines such as A549, MCF-7, and HeLa. Silver nanoparticles Silver nanoparticles were biologically synthesized using the extract of O. majorana. After physical and chemical evaluation, the antimicrobial properties of the synthesized nanoparticles were evaluated in Escherichia coli and Staphylococcus aureus. Finally, the inhibitory effect of synthesized nanoparticles was assessed by the MTT assay on 3 cancer cell lines. With an average size of 15 nm, the nanoparticles synthesized by O. majorana extract had a significant inhibitory and lethal effect on 2 bacteria. The anti-cancer effect of the synthesized nanoparticles was on all 3 cell lines. However, with increasing the concentration of nanoparticles on the survival of cancer cells decreased, indicating a direct dose interaction on the inhibitory rate of silver nanoparticles. At a concentration of 50 g/mL, the synthesized Silver nanoparticles showed more than 50% inhibitory effect on different cell lines. Our results demonstrate that medicinal plants can be used in the successful synthesis of biological Silver nanoparticles. The synthesized AgNPs can be utilized as effective medicinal agents in the management of several cancers due to their coating made of effective secondary metabolites and the release of silver ions (Ag+).


  1. Yaqoob S., Adnan R., Rameez Khan R.M., Rashid M., 2020. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Frontiers in Chemistry. 8, 376. doi.org/10.3389/fchem.2020.00376
  2. Mu W., Chu Q., Liu Y., Zhang N., 2020. A review on Nano‑based drug delivery system for cancer chemo immunotherapy. Nano-Micro Letters.12, 142. doi.10.1007./s40820.020.00482-6.
  3. Sharma A., Goyal A.K., Rath G., 2018. Recent advances in metal nanoparticles in cancer therapy, Journal of Drug Target. 8, 617e632. doi.1080/1061186X.2017.1400553.
  4. Iqbal S., Fakher-e-Alam M., Akbar F., Shafiq M., Atif M., Amin N., 2019. Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure. 1189, 203e209. doi.org/10.1016/j.molstruc.2020.127889
  5. Yin I.X., Zhang J., Zhao I., Mei M.L., Li Q., Chu C.H., 2020. The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine. 15, 2555–2562. doi.org/10.2147/IJN.S246764.
  6. Wang L., Hu C., Shao L., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 12, 1227–1249. doi.10.2147/IJN.S121956.
  7. Baranwal A., Srivastava A., Kumar P., Bajpai V.K., Maurya P.K., Chandra P., 2018. Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiology. 9, 422. doi.org/10.3389/fmicb.2018.00422
  8. Fernando S.S.N., Gunasekara T.D.C.P., Holton J., 2018. Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases. 8(1), 2-11.
  9. Lee S.H., Jun B.H., 2019. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Science. 20, 865. doi .org / 10. 3390 /ijms20040865.
  10. Liao S., Zhang Y., Pan X., Zhu F., Jiang O., Liu Q., 2019. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International Journal of Nanomedicine. 14, 1469–1487. doi.org/10.2147/IJN.S191340.
  11. Roy A., Bulut O., Some S., Kumar Mandal A., Yilmaz M.D., 2018. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. 9, 2673–2702. doi.org/10.1039/C8RA08982E.
  12. Sharma D., Kanchi S., Bisetty K., 2015. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry. 12, 3576–3600. 2
  13. Akhtar M.S., Panwar J., Yun Y.S., 2013. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry and Engineering. 1, 591−602. doi.org/10.1021/sc300118u.
  14. Gerlier D., Thomasset N., 1986. Use of MTT colorimetric assay to measure cell activation. Journal of Immunology Methods. 94(1-2), 5763. doi.10.106/0022-1759 (86)90215.
  15. Abideen S., Sankar M., 2015. In-vitro Screening of Antidiabetic and Antimicrobial Activity against Green Synthesized AgNO3 using Seaweeds. J Nanomed Nanotechnol. 10, 2157-7439.‏
  16. Roy A., Bulut O., Some S., Kumar Mandal A., Yilmaz MD., 2018. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances. 9, 2673–2702. doi.org/10.1039/C8RA08982E.
  17. Ruíz-Baltazar A.J., Reyes-López S.Y., Larrañaga D., Estévez M., Pérez R., 2017. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics. 7, 639–2643. doi.org/10.1021/mp800051m.
  18. Gliga A.R., Skoglund S., Odnevall Wallinder I., Fadeel B., and Karlsson H.L., 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and Fiber Toxicology. 11, 1. doi.z10.1126/science.1114397.
  19. Duletic S., Alimpic´ Aradski A., Kolarevic S., Vukovic´-Gacˇic´ B., Oaldje M., Živkovic´ J., Šavikin K, Marin P., 2018. Antineurodegenerative, antioxidant and antibacterial activities and phenolic components of Origanum majorana L. (Lamiaceae) extracts. Journal of Applied and Botany Food Quality. 91. doi.org/10.5073/JABFQ.2018.091.018.
  20. Leeja L., Thoppil J., 2007. Antimicrobial activity of methanol extract of Origanum majorana L. (Sweet marjoram). J Environ Biol Acad Environ Biol India. 28, 145–146. doi.10.4236/cm.2012.31010
  21. Blair M.A., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J.C., 2015. Molecular mechanisms of antibiotic resistance. Nature Review. 13, 42-51. doi.10.1038/nrmicro3380. Epub 2014 Dec 1.
  22. Wang L., Hu C., Shao L., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 12, 1227–1249. doi.10.2147/IJN.S121956.
  23. Lee S.H., Jun B.H., 2019. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Science. 20, 865. doi.org/10.3390/ijms20040865.
  24. Datta P.K., Sandeep A., Sonu A., 2018. Anti-proliferative effect of silver nanoparticles in HeLa cells due to enhanced oxidative stress. Research Journal of Biotechnology. 13(2), 68-74. doi.org/10.2147/IJN.S23981.
  25. Sukirtha R., Manasa Priyanka K., Antony J.J., Kamalakkannan S., Balasubramanian P., 2012. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochemistry 47, 273279. doi. 10.5505/ejm.2019.66487.
  26. Folkman J., 2002. Role of angiogenesis in tumor growth and metastasis. In Seminars in Oncology; Elsevier: Amsterdam, the Netherlands. 15–18.
  27. Shen H.H., Chan E.C., Lee J.H., Bee Y.S., Lin T.W., Dusting G.J., 2015. Nanocarriers for treatment of ocular neovascularization in the back of the eye: New vehicles for ophthalmic drug delivery. Nanomedicine. 10: 2093–2107. doi: 10.2217/nnm.15.47.
  28. Ratan Z.A., Haidere M.F., Nurunnabi M.D., Shahriar S., Ahammad A.J.S., Shim Y.Y., 2020. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 12, 855. doi.org/10.3390/cancers12040855.
  29. He Y., Li X., Wang J., 2017. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environ Toxicol Pharmacol. 56, 56-60. doi.10.1016/j.etap.2017.08.035.
  30. Farzan B., Shahsavari S., Abbaszadeh S., Teimouri H., 2019. Phytotherapy for seizure: An overview of the most important indigenous Iranian medicinal plants with anticonvulsant properties. Plant Science Today. 6(4), 367-372.
  31. Nazer M.R., Abbaszadeh S., Anbari K., Shams M., 2019. A review of the most important medicinal herbs affecting giardiasis. Journal of Herb Med Pharmacology. 8(2), 78-84.
  32. Manouchehri A., Shakib P., Biglaryan F., Nazer M., Darvishi M., 2021. The most important medicinal plants affecting bee stings: A systematic review study. Uludag Aricilik Dergisi. 21(1), 91-103.
  33. Alizadeh M., Safarzadeh A., Bahmani M., Beyranvand F., Rafieian-Kopaei M., Abbaszadeh S., 2018. Brucellosis: Pathophysiology and new promising treatments with medicinal plants and natural antioxidants. Asian Pacific J Trop Med. 11(11), 597-608.
  34. Gholami-Ahangaran M., Ahmadi-Dastgerdi A., Karimi-Dehkordi M., 2020. Thymol and carvacrol; as antibiotic alternative in green healthy poultry production. Plant Biotechnol Persa. 2(1), 22-25
  35. Farzan B., Abbaszadeh S., Teimouri H., 2019. Ethnobotanical treatments for earache and sore throat. International Journal of Research in Pharmaceutical Sciences. 10(2), 1354-1360.
  36. Abbaszadeh S., Andevari A.N., Koohpayeh A., Naghdi N., Alizadeh M., Beyranvand F., Harsej Z., 2018. Folklore medicinal plants used in liver disease: A review. Int J Green Pharmacy. 12(3), 463-472.
  37. Abbasi N., Khosravi A., Aidy A., Shafiei M., 2016. Biphasic response to luteolin in MG-63 osteoblast-like cells under high glucose-induced oxidative stress. Iranian Journal of Medical Sciences. 41(2), 118-125.
  38. Solati K., Karimi M., Rafieian-Kopaei M., Abbasi N., Abbaszadeh S., Bahmani M., 2020. Phytotherapy for wound healing: The most important herbal plants in wound healing based on iranian ethnobotanical documents. Mini-Reviews in Medicinal Chemistry. 21(4), 500-519.
  39. Farzan B., Abbaszadeh S., Basati G., Teimouri H., 2019. An overview of the most important medicinal plants effective on the strength of memory and mind in Iranian ethnobotany. Journal of Pharmacy and Pharmacognosy Research. 7(3), 156-162.
  40. Sedighi M., Sewell R.D.E, Nazari A., Abbaszadeh S., Cheraghi M., Amini A., Heydari Z., Rafieian-Kopaei M., 2019. A review on the most important medicinal plants effective in cardiac ischemia-reperfusion injury. Current Pharmaceutical Design. 25(3), 352-358.
  41. Jabbari N., Gheibi P., Eftekhari Z., 2019. The therapeutic effects of isolated Eugenol of Syzygium aromaticum. Plant Biotechnol Persa. 1(1), 42-44.
  42. Ma D., Han T., Karimian M., Abbasi N., Ghaneialvar H., Zangeneh A., 2020. Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer. International Journal of Biological Macromolecules. 165, 767-775.
  43. Nouri A., Heidarian E., Amini-Khoei H., Abbaszadeh S., Basati G., 2019. Quercetin through mitigation of inflammatory response and oxidative stress exerts protective effects in rat model of diclofenac-induced liver toxicity. J Pharmacy Pharmacog Res. 7(3), 200-212.
  44. Zhang Y., Mahdavi B., Mohammadhosseini M., Rezaei-Seresht E., Paydarfard S., Qorbani M., Karimian M., Abbasi N., Ghaneialvar H., Karimi E., 2021. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arabian Journal of Chemistry. 14(5), 103105.