Assessments the Role of Neutrophil CD64 in Patients with Sepsis in Al- najaf Al- Ashraf Province

Document Type : Original Article


College of Health and Medical Techniques, Al-Forat Al- Awsat Technical University, Kufa, Iraq


Sepsis is a global health matter that provides a considerable danger of death. The main objective of this investigation was to assess the use of CD64 and IgG in the development of bacterial sepsis in patients infected with (Salmonella typhi and Klebsiella pneumonia), Gram-positive bacteria Staphylococcus aureus and the correlation of the marker (CD64) with bacterial sepsis. This study was carried out with a total (140) individual of both sex (100) suspected sepsis patients and (40) healthy group with age ranged (13-65) year enrolled in this study. The result of Microbiological tests was found 40 specimens contain bacterially isolated, was the frequency among 30 (75%) male and 10(25%) female and result revealed that 10 (25%) specimens as a Gram-positive isolate (S. aureus) and 30(75%) specimens as Gram-negative bacteria (S. typhi, K. pneumoniae) while 60 of the rest specimens did not show any growth. While the current study, 30 Gram-negative isolates appeared as a positive result for K. pneumoniae (6) and (24) for S. typhi isolates and represented a major cause for sepsis by using the VITEK system to confirm all bacterial isolates. This study concluded that the sepsis disease influences some risk factor such as age, sex, place of living and the type of bacteria, also affected on immune response represented by CD64.


  1. Hotchkiss R.S., Monneret G., Payen D., 2013. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious Diseases. 13(3), 260-268.
  2. Polat G., Ugan R.A., Cadirci E., Halici Z., 2017. Sepsis and septic shock: current treatment strategies and new approaches. The Eurasian Journal of Medicine. 49(1), 53.
  3. Meatherall B.L., Gregson D., Ross T., Pitout J.D., Laupland K.B., 2009. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. The American Journal of Medicine. 122(9), 866-873.
  4. Amicizia D., Micale R., Pennati B., Zangrillo F., Iovine M., Lecini E., Marchini F., Lai P., Panatto D., 2019. Burden of typhoid fever and cholera: similarities and differences. Prevention strategies for European travelers to endemic/epidemic areas. Journal of Preventive Medicine and Hygiene. 60(4), E271.
  5. Ng P. C., Li G., Chui K.M., Chu W.C., Li K., Wong R.P., Chik K.W., Wong E., Fok T.F., 2004. Neutrophil CD64 is a sensitive diagnostic marker for early-onset neonatal infection. Pediatric Research. 56(5), 796-803.
  6. Barth E., Fischer G., Schneider E.M., Wollmeyer J., Georgieff M., Weiss M., 2001. Differences in the expression of CD64 and mCD14 on polymorphonuclear cells and on monocytes in patients with septic shock. Cytokine. 14(5), 299-302.
  1. Gibot S., Kolopp-Sarda M.N., Béné M.C., Cravoisy A., Levy B., Faure G. C., Bollaert P.E., 2004. Plasm level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Annals of Internal Medicine. 141(1), 9-15.
  1. Prescott L., Harley J., 2002.Laboratory Exercises in Microbiology. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission
  2. Medell M., Medell M., Martínez A., Valdés R., 2012. Characterization and sensitivity to antibiotics of bacteria isolated from the lower respiratory tract of ventilated patients hospitalized in intensive care units. The Brazilian Journal of Infectious Diseases. 16(1), 45-51.
  3. Mehrad B., Clark N.M., Zhanel G.G., Lynch III J.P., 2015. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest. 147(5), 1413-1421.
  4. Parajuli N.P., Acharya S.P., Mishra S.K., Parajuli K., Rijal B.P., Pokhrel B.M., 2017. High burden of antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal. Antimicrobial Resistance & Infection Control. 6(1), 1-9.
  5. Rudd K.., Kissoon N., Limmathurotsakul D., Bory S., Mutahunga B., Seymour C.W., Angus D.C., West T.E., 2018. The global burden of sepsis: barriers and potential solutions. Critical Care. 22(1), 1-11.
  6. Paoli C.J., Reynolds M.A., Sinha M., Gitlin M., Crouser E., 2018. Epidemiology and costs of sepsis in the United States—an analysis based on timing of diagnosis and severity level. Critical Care Medicine. 46(12), 1889.
  7. Fleuren L.M., Klausch T.L., Zwager C.L., Schoonmade L.J., Guo T., Roggeveen L.F., Swart E.L., Girbes A.R., Thoral P., Ercole A., 2020. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Medicine. 46(3), 383-400.
  8. Kissoon N., Carcillo J.A., Espinosa V., Argent A., Devictor D., Madden M., Singhi S., van der Voort E., Latour J., Contributors G.S.I.V.C., 2011. World federation of pediatric intensive care and critical care societies: global sepsis initiative. Pediatric Critical Care Medicine. 12(5), 494-503.
  9. Taccone F.S., Stordeur P., De Backer D., Creteur J., Vincent J.L., 2009. γ-globulin levels in patients with community-acquired septic shock. Shock. 32(4), 379-385.
  10. Martin G.S., Mannino D.M., Eaton S., Moss M., 2003. The epidemiology of sepsis in the United States from 1979 through 2000. New England Journal of Medicine. 348(16), 1546-1554.
  11. Barenfanger J., Drake C., Kacich G., 1999. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. Journal of Clinical Microbiology. 37(5), 1415-1418.
  12. Barenfanger J., Short M.A., Groesch A.A., 2001. Improved antimicrobial interventions have benefits. Journal of Clinical Microbiology. 39(8), 2823-2828.
  13. Funke G., Funke-Kissling P., 2005. Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. Journal of Clinical Microbiology. 43(1), 84-88.
  14. Ling T.K., Tam P., Liu Z., Cheng A.F., 2001. Evaluation of VITEK 2 rapid identification and susceptibility testing system against gram-negative clinical isolates. Journal of Clinical Microbiology. 39(8), 2964-2966.
  15. Kloos W.E., Bannerman T.L., 1994. Update on clinical significance of coagulase-negative staphylococci. Clinical Microbiology Reviews. 7(1), 117-140.
  16. Lang S., Livesley M., Lambert P., Elliott J., Elliott T., 1999. The genomic diversity of coagulase-negative staphylococci associated with nosocomial infections. Journal of Hospital Infection. 43(3), 187-193.
  17. Qureshi S., Lewis S., Gant V., Treacher D., Davis B., Brown K., 2001. Increased distribution and expression of CD64 on blood polymorphonuclear cells from patients with the systemic inflammatory response syndrome (SIRS). Clinical & Experimental Immunology. 125(2), 258-265.
  1. Sprung C.L., Sakr Y., Vincent J.L., Le Gall J.R., Reinhart K., Ranieri V.M., Gerlach H., Fielden J., Groba C. B., Payen D., 2006. An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence In Acutely Ill Patients (SOAP) study. Intensive Care Medicine. 32(3), 421-427.
  2. Brun-Buisson C., 2000. The epidemiology of the systemic inflammatory response. Intensive Care Medicine. 26(1), S064-S074.
  3. Gericke G.H., Ericson S.G., Pan L., Mills L.E., Guyre P.M., Ely P., 1995. Mature polymorphonuclear leukocytes express high‐affinity receptors for IgG (FcγRI) after stimulation with granulocyte colony‐stimulating factor (G‐CSF). Journal of Leukocyte Biology. 57(3), 455-461.
  4. De Haas M., Vossebeld P.M., Von Dem Borne A.K., Roos D., 1995. Fcγ receptors of phagocytes. The Journal of Laboratory and Clinical Medicine. 126(4), 330-341.
  5. Schiff D.E., Rae J., Martin T.R., Davis B.H., Curnutte J.T., 1997. Increased Phagocyte FcγRI expression and improved Fcγ-receptor–mediated phagocytosis after in vivo recombinant human interferon-γ treatment of normal human subjects. Blood, The Journal of the American Society of Hematology. 90(8), 3187-3194.
  6. Davis B.H., Olsen S.H., Ahmad E., Bigelow N.C., 2006. Neutrophil CD64 is an improved indicator of infection or sepsis in emergency department patients. Archives of Pathology & Laboratory Medicine. 130(5), 654-661.
  7. Davis B.H., Bigelow N.C., 2005. Comparison of neutrophil CD64 expression, manual myeloid immaturity counts, and automated hematology analyzer flags as indicators of infection or sepsis. Laboratory Hematology. 11(2), 137-151.
  8. Livaditi O., Kotanidou A., Psarra A., Dimopoulou I., Sotiropoulou C., Augustatou K., Papasteriades C., Armaganidis A., Roussos C., Orfanos S. E., 2006. Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis. Cytokine. 36(5-6), 283-290.
  9. Cardelli P., Ferraironi M., Amodeo R., Tabacco F., De Blasi R., Nicoletti M., Sessa R., Petrucca A., Costante A., Cipriani P., 2008. Evaluation of neutrophil CD64 expression and procalcitonin as useful markers in early diagnosis of sepsis. International Journal of Immunopathology and Pharmacology. 21(1), 43-49.
  10. Lobreglio GB, d'Aversa P, Leo L, Scolozzi S, Fiore G., 2008. Quantitative expression of CD64 on neutrophil granulocytes as early marker of sepsis or severe infection. Haematologica. 93, 21.
  11. Hsu K. H., Chan M. C., Wang J.M., Lin L.Y., Wu C.L., 2011. Comparison of Fcγ receptor expression on neutrophils with procalcitonin for the diagnosis of sepsis in critically ill patients. Respirology. 16(1), 152-160.
  12. Gámez‐Díaz L. Y., Enriquez L. E., Matute J. D., Velásquez S., Gómez I. D., Toro F., Ospina S., Bedoya V., Arango C. M., Valencia M. L., 2011. Diagnostic accuracy of HMGB‐1, sTREM‐1, and CD64 as markers of sepsis in patients recently admitted to the emergency department. Academic Emergency Medicine, 18 (8), 807-815.
  13. Hoffmann J.J., 2009. Neutrophil CD64: a diagnostic marker for infection and sepsis. Clinical Chemistry and Laboratory Medicine. 47(8), 903-916.
  14. Gros A., Roussel M., Sauvadet E., Gacouin A., Marqué S., Chimot L., Lavoué S., Camus C., Fest T., Le Tulzo Y., 2012. The sensitivity of neutrophil CD64 expression as a biomarker of bacterial infection is low in critically ill patients. Intensive Care Medicine. 38(3), 445-452.
  15. jaertoft G., Håkansson L., Foucard T., Ewald U., Venge P., 2005. CD64 (Fcγ receptor I) cell surface expression on maturing neutrophils from preterm and term newborn infants. Acta Paediatrica. 94(3), 295-302.
  16. Shao J., Huang X., Sun M., LZ D., Tang Y., Le Y., 2005. Expression of peripheral blood neutrophil CD64 in neonatal septicemia. Zhonghua er ke za zhi= Chinese Journal of Pediatrics. 43(7), 510-513.
  17. Guyre P.M., Campbell A.S., Kniffin W.D., Fanger M.W., 1990. Monocytes and polymorphonuclear neutrophils of patients with streptococcal pharyngitis express increased numbers of type I IgG Fc receptors. The Journal of Clinical Investigation. 86(6), 1892-1896.
  18. Layseca‐Espinosa E., Pérez‐González L.F., Torres‐Montes A., Baranda L., De La Fuente H., Rosenstein Y., González‐Amaro R., 2002. Expression of CD64 as a potential marker of neonatal sepsis. Pediatric Allergy and Immunology. 13(5), 319-327.
  19. Groselj-Grenc M., Ihan A., Derganc M., 2008. Neutrophil and monocyte CD64 and CD163 expression in critically ill neonates and children with sepsis: comparison of fluorescence intensities and calculated indexes. Mediators of inflammation. doi: 10.1155/2008/202646.
  20. Wagner C., Deppisch R., Denefleh B., Hug F., Andrassy K., Hänsch G. M., 2003. Expression patterns of the lipopolysaccharide receptor CD14, and the FCγ receptors CD16 and CD64 on polymorphonuclear neutrophils: data from patients with severe bacterial infections and lipopolysaccharide-exposed cells. Shock. 19(1), 5-12.
  21. Nuutila J., Hohenthal U., Laitinen I., Kotilainen P., Rajamäki A., Nikoskelainen J., Lilius E.M., 2007. Simultaneous quantitative analysis of FcγRI (CD64) expression on neutrophils and monocytes: a new, improved way to detect infections. Journal of Immunological Methods. 328(1-2), 189-200.