Changes in the Level of Asprosin as a Novel Adipocytokine after Different Types of Resistance Training

Document Type : Original Article

Authors

1 Department of Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran

2 Department of Exercise & Sport Science, and Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, NC 27599, USA

10.22034/jchr.2021.1935792.1361

Abstract

Obesity is at epidemic proportions in the world. Evidence supports increased physical activity and exercise are efficacious in controlling obesity, in part due to altering select adipocytokine levels. The present study aimed to compare the effect of 12 weeks of three resistance training methods (traditional, circular and interval) on the levels of the adipocytokine asprosin and body composition in sedentary men with obesity. Forty-four sedentary men with obesity, who were randomly divided into the 4 equal groups: traditional, circular, and interval resistance training as well as a control group. Results showed that there was a significant interaction between the type of training used and time on asprosin levels (F (1,40)= 13353.03, P= 0.001, ES= 0.99). All types of resistance training decreased asprosin levels and improved body composition parameters in comparison to the control group (F (3, 40) = 34.60, P = 0.001, ES= 0.77). Interval resistance training had the greatest effect on reducing asprosin levels and improving body composition related outcomes (body mass: P=0.001, ES=0.633, body mass index: P=0.001, ES=0.632, percent body fat: P=0.001, ES=0.647, waist to hip ratio: P=0.001, ES=0.786). The results of the present study support the benefits of resistance training as a non-pharmacological approach in reducing asprosin levels and improving body composition in individuals with obesity. 

Keywords


  1. World Health Organization. World Health Organization Obesity and Overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed 9 june 2021)
  2. Swinburn B.A., Sacks G., Hall K.D., McPherson K., Finegood D.T., Moodie M.L., Gortmaker S.L., 2011. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 378(9793), 804-814.
  3. Ng S.W., Popkin B.M., 2012. Time use and physical activity: a shift away from movement across the globe. Obes Rev. 13(8), 659-680.
  4. Ladabaum U., Mannalithara A., Myer P.A., Singh G., 2014. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am J Med. 127(8), 717-727. e712.
  5. Singh G.M., Danaei G., Farzadfar F., Stevens G.A., Woodward M., Wormser D., Kaptoge S., Whitlock G., Qiao Q., Lewington S., 2013. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PloS One. 8(7), e65174.
  6. Czernichow S., Kengne A.P., Stamatakis E., Hamer M., Batty G.D., 2011. Body mass index, waist circumference and waist–hip ratio: which is the better discriminator of cardiovascular disease mortality risk? Evidence from an individual‐participant meta‐analysis of 82 864 participants from nine cohort studies. Obes Rev. 12(9), 680-687.
  7. Lauby-Secretan B., Scoccianti C., Loomis D., Grosse Y., Bianchini F., Straif K., 2016. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 375(8), 794-798.
  8. Anandacoomarasamy A., Caterson I., Sambrook P., Fransen M., March L., 2008. The impact of obesity on the musculoskeletal system. Int J Obes. 32(2), 211-222.
  9. Anstey K., Cherbuin N., Budge M., Young J., 2011. Body mass index in midlife and late‐life as a risk factor for dementia: a meta‐analysis of prospective studies. Obes Rev. 12(5), e426-e437.
  10. Study G.B.O.D., United States: Institute for Health Metrics and Evaluation (IHME) Seattle, 2017.
  11. Chooi Y.C., Ding C., Magkos F., 2019. The epidemiology of obesity. Metabolism. 92, 6-10.
  12. Kelly T., Yang W., Chen C.-S., Reynolds K., He J., 2008. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 32(9), 1431-1437.
  13. Yuan M., Li W., Zhu Y., Yu B., Wu J., 2020. Asprosin: a novel player in metabolic diseases. Front Endocrinol. 11, 64.
  14. Lee T., Yun S., Jeong J.H., Jung T.W., 2019. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 486, 96-104.
  15. Duerrschmid C., He Y., Wang C., Li C., Bournat J.C., Romere C., Saha P.K., Lee M.E., Phillips K.J., Jain M., 2017. Asprosin is a centrally acting orexigenic hormone. Nat Med. 23 (12), 1444.
  16. Wang C.Y., Lin T.A., Liu K.H., Liao C.H., Liu Y.Y., Wu V.C.C., Wen M.S., Yeh T.S., 2019. Serum asprosin levels and bariatric surgery outcomes in obese adults. Int J Obes. 43(5), 1019-1025.
  17. Wang M., Yin C., Wang L., Liu Y., Li H., Li M., Yi X., Xiao Y., 2019. Serum asprosin concentrations are increased and associated with insulin resistance in children with obesity. Ann Nutr Metab. 75(4), 205-212.
  18. Golbidi S., Laher I., 2014. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res.726861. doi: 10.1155/2014/726861.
  19. Mika A., Macaluso F., Barone R., Di Felice V., Sledzinski T., 2019. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol. 10, 26.
  20. Ceylan H.İ., Saygın Ö., Özel Türkcü Ü., 2020. Assessment of acute aerobic exercise in the morning versus evening on asprosin, spexin, lipocalin-2, and insulin level in overweight/obese versus normal weight adult men. Chronobiol Int. 1-17.
  21. Wiecek M., Szymura J., Maciejczyk M., Kantorowicz M., Szygula Z., 2018. Acute anaerobic exercise affects the secretion of asprosin, irisin, and other cytokines–a comparison between sexes. Front Physiol. 9, 1782.
  22. Schumann U., Qiu S., Enders K., Bosnyák E., Laszlo R., Machus K., Trájer E., Jaganathan S., Zügel M., Steinacker J.M., 2017. Asprosin, A Newly Identified Fasting-Induced Hormone Is Not Elevated In Obesity And Is Insensitive To Acute Exercise: 3592 Board# 39 June 3 800 AM-930 AM. Med Sci Sports Exercise. 49(5S), 1023.
  23. Westerterp K.R., 2018. Exercise, energy balance and body composition. Eur J Clin Nutr. 72(9), 1246-1250.
  24. Paoli A., Moro T., Bianco A., 2015. Lift weights to fight overweight. Clin Physiol Funct Imaging. 35(1), 1-6.
  25. Campa F., Maietta Latessa P., Greco G., Mauro M., Mazzuca P., Spiga F., Toselli S., 2020. Effects of different resistance training frequencies on body composition, cardiometabolic risk factors, and handgrip strength in overweight and obese women: A randomized controlled trial. J Func Morphol and Kinesiol. 5(3), 51.
  26. Mogharnasi M., TajiTabas A., Tashakorizadeh M., Nayebifar S., 2019. The Effects of resistance and endurance training on levels of nesfatin-1, HSP70, insulin resistance and body composition in women with type 2 diabetes mellitus. Sci Sports. 34(1), e15-e23.
  27. Cavalcante E.F., Ribeiro A.S., do Nascimento M.A., Silva A.M., Tomeleri C.M., Nabuco H.C., Pina F.L., Mayhew J.L., Da Silva-Grigoletto M.E., da Silva D.R., 2018. Effects of different resistance training frequencies on fat in overweight/obese older women. Int J Sports Med. 39(7), 527-534.
  28. Ugur K., Aydin S., 2019. Saliva and blood asprosin hormone concentration associated with obesity. Int J Endocrinol. doi: 10.1155/2019/2521096. 
  29. Knuttgen H.G., 2007. Strength training and aerobic exercise: comparison and contrast. J Strength Con Res. 21(3), 973-978.
  30. Buitrago S., Wirtz N., Yue Z., Kleinöder H., Mester J., 2012. Effects of load and training modes on physiological and metabolic responses in resistance exercise. Eur J Appl Physiol. 112(7), 2739-2748.
  31. Houmard J., Wheeler W., McCammon M., Wells J., Truitt N., Hamad S., Holbert D., Israel R., Barakat H., 1991. An evaluation of waist to hip ratio measurement methods in relation to lipid and carbohydrate metabolism in men. Int J Obes. 15(3), 181-188.
  32. Liguori G., Medicine A.C.O.S. ACSM's guidelines for exercise testing and prescription, 11rd ed., Lippincott Williams & Wilkins: 2020.
  33. Jackson A.S., Pollock M.L., 1985. Practical assessment of body composition. Phys Sportsmed. 13(5), 76-90.
  34. Moro T., Marcolin G., Bianco A., Bolzetta F., Berton L., Sergi G., Paoli A., 2020. Effects of 6 weeks of traditional resistance training or high intensity interval resistance training on body composition, aerobic power and strength in healthy young subjects: A randomized parallel trial. Int J Environ Res and Public Health. 17(11), 4093.
  35. Fleck S.J., Kraemer W., 2014.Designing resistance training programs, 4rd ed., Human Kinetics: United States of America.
  36. Paoli A., Moro T., Marcolin G., Neri M., Bianco A., Palma A., Grimaldi K., 2012. High-Intensity Interval Resistance Training (HIRT) influences resting energy expenditure and respiratory ratio in non-dieting individuals. Trans Med. 10(1), 1-8.
  37. Di Blasio A., Izzicupo P., Tacconi L., Di Santo S., Leogrande M., Bucci I., Ripari P., Di Baldassarre A., Napolitano G., 2014. Acute and delayed effects of high intensity interval resistance training organization on cortisol and testosterone production. J Sports Med Phys Fitness. 56(3), 192-199.
  38. Kolahdouzi S., Baghadam M., Kani-Golzar F.A., Saeidi A., Jabbour G., Ayadi A., De Sousa M., Zouita A., Abderrahmane A.B., Zouhal H., 2019. Progressive circuit resistance training improves inflammatory biomarkers and insulin resistance in obese men. Physiol & Behav. 205, 15-21.
  39. Brzycki M.A., 1989. practical approach to strength training, 3rd ed., Masters Press Grand Rapids.
  40. Baechle T., Earle R.. Essentials of Strength Training and Conditioning. Champaign, IL: Human Kinetics. Inc. South Dakota: sn, 1994
  41. Ceylan H.İ., Saygın Ö., 2020. An investigation of the relationship between new fasting hormone asprosin, obesity and acute–chronic exercise: current systematic review. Arch Physiol Biochem. 1-12.
  42. Maesta N., Nahas E. A., Nahas-Neto J., Orsatti F. L., Fernandes C. E., Traiman P., Burini R. C., 2007. Effects of soy protein and resistance exercise on body composition and blood lipids in postmenopausal women. Maturitas, 56 (4), 350-358.
  43. Ko J.R., Seo D.Y., Kim T.N., Park S.H., Kwak H.B., Ko K. S., Rhee B.D., Han J., 2019. Aerobic exercise training decreases hepatic asprosin in diabetic rats. J Clin Med. 8(5), 666.
  44. Nakhaei H., Mogharnasi M., Fanaei H., 2019. Effect of swimming training on levels of asprosin, lipid profile, glucose and insulin resistance in rats with metabolic syndrome. Obes Med. 15, 100111.
  45. Jorge M.L.M.P., de Oliveira V.N., Resende N.M., Paraiso L.F., Calixto A., Diniz A.L.D., Resende E.S., Ropelle E.R., Carvalheira J.B., Espindola F.S., 2011. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism. 60(9), 1244-1252.