Larvicidal Activity of Melaleuca leucadendra Leaves Extract Against Aedes aegypti

Document Type : Original Article


Public Health Department, Faculty of Health Science, Universitas Muhammadiyah Surakarta, Jl. A Yani Tromol Pos, Karanganyar, Jawa Tengah Province, Indonesia, 57162


Dengue Hemorrhagic Fever (DHF) depends on controlling Aedes aegyptimosquitoes and larvae. Currently, larvicide control still uses temefos larvicide, though several studies have reported resistance. Insecticides from plants can be used as an alternative. One of the plants reported to have larvicide potency was Melaleuca leucadendraleaves. This study aimed to look at ethanol extract of M.leucadendra leaves activity in killing Aedes aegyptilarvae and LC50 values ​​after a 24-hour examination. This type of research was Experimental Design with Post-test Only Control Group Design. M. Leucadendra leaves was extracted through maceration process using ethanol 96%. The treatments consisted of 8 concentrations of 400mg/L (0.04%); 1000mg/L (0.1% ); 1600mg/L (0.16%); 2000mg/L (0.2%); 10,000mg/L (1%); 20,000mg/L (2%); 30,000mg/L (3%); 40,000mg/L (4%) and the control group (0%). Each concentration was replicated four times and used twentyof the third larvae A.aegypti. The results showed that M.leucadendra has a lethal ability against A.aegypti. There was a correlation between the extract concentration and the larva mortality (p=0.000; 95%). Extract concentration 0.04-0.2% of the extract caused mortality less than 3%, and the highest mortality (47.5%) reached by concentration 4%. The LOGIT test showed that the number of LC50 was 3.7% (37,600mg/L) with 95% significance. A high concentration (>1%) of extract M. leucadendra caused turbid, greenish-gray color, and unpleasant smell on the water. Regarding the WHO bioassay guideline, etahnol extract of M. leucadendra leaves was less effective in killing Aedes aegypti larvae, though it causes lethal effect A.aegypti.


1. Rahmasari F.V., Wijayanti D., Khaerani N., 2020. The Correlation Between Blood Parameters as Early Detection on Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) in Children. Bangladesh Journal of Medical Science. 19(2), 273-277.
2. Arsin A.A., Istiqamah S.N.A., Elisafitri R., Nurdin M.A., Sirajuddin S., Pulubuhu D.A.T., Yani A., 2020. Correlational study of climate factor, mobility and the incidence of Dengue Hemorrhagic Fever in Kendari, Indonesia. Enfermería Clínica, 30, 280-284.
3. Chen C.D., Nazni W.A., Lee H.L., & Sofian-Azirun M., 2005. Susceptibility of Aedes aegypti and Aedes albopictus to temephos in four study sites in Kuala Lumpur City Center and Selangor State, Malaysia. Tropical Biomedicine. 22(2), 207–216.
4. Tikar S.N., Kumar A., Prasad G.B.K.S., Prakash S., 2009. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitology Research. 105(1), 57–63.
5. Sinaga L., Martini M., Saraswati L., 2016. Status of Aedes Aegypti (Linnaeus) Larvae Resistance to Temephos (Study in Jatiasih Village, Jatiasih Dist, West Java) (Status Resistensi Larva Aedes Aegypti (Linnaeus) Terhadap Temephos (Studi Di Kelurahan Jatiasih Kecamatan Jatiasih Kota Bekasi Provinsi Jawa Barat)) . Jurnal Kesehatan Masyarakat (e-Journal). 4(1), 142–152.
6. Astriani Y., Widawati M., 2017. Potential Plants in Indonesia as Natural Larvicides for Aedes aegypti (Potensi Tanaman Di Indonesia Sebagai Larvasida Alami Untuk Aedes aegypti). Spirakel. 8(2), 37–46
7. Aadesariya M.K., Ram V.R., Dave P.N., 2019. Investigation of phytochemicals in methanolic leaves extracts of Abutilon pannosum and Grewia tenax by Q-TOF LC/MS. Progress in Chemical and Biochemical Research. 2(1),13-19
8. Khan Muluh E., Odokpe Ugbede A., Tor-Anyin T.A., 2019. Screening of Cassia Sieberiana (Fabaceae) Leaf Extract for In-Vitro Anti Microbial and Anti-Ulcer Activities. Progress in Chemical and Biochemical Research. 2(3),143-149.
9. Ghotekar S., Pagar T., Pansambal S., Oza R., 2020. A Review on Green Synthesis of Sulfur Nanoparticles via Plant Extract, Characterization and its Applications. Advanced Journal of Chemistry-Section.B2 (3), 128-143.
10. Adebayo M.A., Akande S.O., Olorunfemi A.D., Ajayi O.O., Orege J.I., Daniel E.F., 2021. Equilibrium and Thermodynamic Characteristics of the Corrosion Inhibition of Mild Steel Using Sweet Prayer Leaf Extract in Alkaline Medium. progress in Chemical and Biochemical Research. 4(1), 80-91.
11. Dias C.N., Alves L., Patricia L., Antonio K., Rodrigues F., Brito, Maria C.A., Rosa C.D.S., Amaral F.M.M.D., Monteiro O.D.S., Andrade E.H.D.A., Maia J.G.S., Moraes D.F.C., 2015. Chemical composition and larvicidal activity of essential oils extracted from Brazilian Legal Amazon Plants against Aedes aegypti L . (Diptera: Culicidae). Evidence-Based Complementary and Alternative Medicine. 35(10), 670-675.
12. Giang A.N.N.T., Huong L.T., Satyal P., Tai T.A., Dai D.N., Hung N.H., Ngoc N.T.B., Setzer W.N., 2020. Mosquito larvicidal activity, antimicrobial activity, and chemical compositions of essential oils from four species of myrtaceae from central Vietnam. Plants. 9(4), 56-68.
13. WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides. http: // whqlibdoc. who. int/hq/2005/WHO_CDS_WHOPES_GCDPP_2005.13.pdf?ua=1.
14. Leyva M., French-Pacheco L., Quintana F., Montada D., Castex M., Hernandez A., Marquetti M. del C., 2016. Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales: Myrtaceae): Natural alternative for mosquito control. Asian Pacific Journal of Tropical Medicine. 9(10), 979–984.
15. Clark T.M., Flis B.J., Remold S.K., 2004. pH tolerances and regulatory abilities of freshwater and euryhaline Aedine mosquito larvae. Journal of Experimental Biology. 207(13), 2297–2304.
16. Amer A., Mehlhorn H., 2006. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitology Research. 99(4), 466–472.
17. Aliboudhar H., Tigrine-Kordjani N., 2014. Effect of extraction technique on the content and antioxidant activity of crude extract of Anacyclus clavatus flowers and their essential oil composition. Natural Product Research. 28(23), 2140–2149.
18. Ramos R.D.S, Rodrigues A.B.L., Farias A.L.F., Simões R.C., Pinheiro M.T., Ferreira R.M.D.A., Costa Barbosa L.M., Picanço Souto R.N., Fernandes J.B., Santos L.D.S., De Almeida S.S.M.D.S., 2017. Chemical Composition and in Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. (Lamiaceae). Scientific World Journal.   23(12), 77-84.
19. Zhang Q.W., Lin L.G., Ye W.C., 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine (United Kingdom). 13(1), 1–26.
20. Ravi R., Husna Zulkrnin N.S., Rozhan N.N., Nik Yusoff N.R., Mat Rasat M.S., Ahmad M.I., Hamzah Z., Ishak I.H., Mohd Amin M.F., 2018. Evaluation of Two Different Solvents for Azolla pinnata Extracts on Chemical Compositions and Larvicidal Activity against Aedes albopictus (Diptera: Culicidae). Journal of Chemistry.  119(6), 45-66. 
21. Krzyzaniak L.M., Antonelli-Ushirobira T.M., Panizzon G., Sereia A.L., Souza J.R.P.De, Zequi J.A.C., Novello C.R., Lopes G.C., Medeiros D.C. De, Silva D.B., Leite-Mello E.V.D.S., Mello J.C.P.De., 2017. Larvicidal Activity against Aedes aegypti and Chemical Characterization of the Inflorescences of Tagetes patula. Evidence-Based Complementary and Alternative Medicine.   21(14), 67-88.
22. Reegan A.D., Kinsalin A.V., Paulraj M.G., Ignacimuthu S., 2015. Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine. 8(1), 29–34.
23. Sharma A., Kumar S., & Tripathi P., 2016. Evaluation of the Larvicidal Efficacy of Five Indigenous Weeds against an Indian Strain of Dengue Vector, Aedes aegypti L. (Diptera: Culicidae). Journal of Parasitology Research.  279(16), 75-91.
24. He Q., Liu X.C., Sun R. Q., Deng Z.W., Du S.S., Liu Z.L., 2014. Mosquito larvicidal constituents from the ethanol extract of inula racemosa Hook. f. roots against Aedes albopictus. Journal of Chemistry. 1–7.
25. Naidu P.L.V., Kishore Kumar K., Mohan Kumar C., Gunesh G., Narasimha Rao M., 2006. Antimicrobial activity of Achyranthes aspera. Biosciences Biotechnology Research Asia. 3(1 A), 171–174.
26. Zulkrnin N.S. H., Rozhan N.N., Zulkfili N.A., Nik Yusoff N.R., Rasat M.S.M., Abdullah N.H., Ahmad M.I., Ravi R., Ishak I.H., Mohd Amin M.F., 2018. Larvicidal effectiveness of azolla pinnata against aedes aegypti (Diptera: Culicidae) with its effects on larval morphology and visualization of behavioural response. Journal of Parasitology Research.  8(2), 34-47.
27. Hosseinpour J., Bravo L., Samimi-Abianeh O., 2018. Computational study of unsteady cavitating flows and erosion in a fuel nozzle. In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers Digital Collection. 14(8), 73-85.
28. Mathew N., Anitha M.G., Bala T.S.L., Sivakumar S.M., Narmadha R., Kalyanasundaram M., 2009. Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitology Research. 104(5), 1017–1025.
29. Isman M.B., 2015. A renaissance for botanical insecticides? Pest Management Science. 71(12), 1587–1590.
30. Arekhi M., Terry L.G., John G.F., Al-Khayat J.A., Castillo A.B., Vethamony P., Clement T.P., 2020. Field and laboratory investigation of tarmat deposits found on Ras Rakan Island and northern beaches of Qatar. Science of The Total Environment. 735, 139516.
Volume 12, Issue 1
January 2022
Pages 63-71
  • Receive Date: 25 September 2020
  • Revise Date: 23 May 2021
  • Accept Date: 05 December 2021
  • First Publish Date: 05 December 2021