Investigation of Seed Germination, Early Growth and Physio-Biochemical Parameters of Canola Seedling Exposed to Co3O4 Engineered Nanoparticles

Document Type : Original Article


1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran


The incessant use of nanoparticles (NPs) may pose serious threats on ecosystem and plants are at maximum risk of their delivery into the environment. The goal of this research was to explore the influence of nano-sized Co3O4 on seed germination, early growth and physio-biochemical parameters of 6-day-old seedling of canola. Seeds were sprouted in Petri plates involving eight various dosages of nano-sized Co3O4 (0-4 g L-1) for 6 days. Germination and early growth parameters (fresh and dry weights of seedling and lengths of radicle and seedling) stimulated at 0.05 and/or 0.1 g L-1 of nano-sized Co3O4 but retarded after 0.1 g L-1 NPs. However, the length of plumule retarded after 0.25 g L-1 NPs. The antioxidant capacity and H2O2 content raised at higher dosages of nano-sized Co3O4. The activity of antioxidant enzymes were enhanced by nano-sized Co3O4 treatment but were repressed at higher dosages. The activity of phenylalanine ammonialyase and phenol content incremented at 0.5 and 1 g L-1 of nano-sized Co3O4 but decremented at higher dosages. The content of malondialdehyde and lipoxygenase activity heightened after 0.1 g L-1 of nano-sized Co3O4. Altogether, the results confirmed the inducive oxidative stress of nano-sized Co3O4­ that was accompanied by plant defense system including enzymes, phenolic compounds and compatible osmolytes such as proline. However, high dosages of the NPs caused toxic impacts on physio-biochemical traits of canola seedling as an oilseed crop.


1. Shafaghat A., Shafaghatlonbar M., 2018. Nanophytosynthesis and characterization of silver nano particles using Chrysanthemum parthenium extract as an eco-friendly method. J Chem Health Risks. 8(1), 85-94.
2. Feyz S.S., Khamchin Moghaddam F., 2019. The evaluation and comparison of single- and multi-walled carbon nanotubes in the removal of heavy metals from water. J Chem Health Risks. 9(4), 311-320.
3. Hasanabadi T., Lack S., Modhej A., Ghafurian H., Alavifazel M., Ardakani M.R., 2019. Feasibility study on reducing lead and cadmium absorption by alfalfa (Medicago scutellata L.) in a contaminated soil using nano-activated carbon and natural based nano-zeolite. Not Bot Horti Agrobo. 47(4), 1185-1193.
4. Vicas S.I., Cavalu S., Laslo V., Tocai M., Costea T.O., Moldovan L., 2019. Growth, photosynthetic pigments, phenolic, glucosinolates content and antioxidant capacity of broccoli sprouts in response to nanoselenium particles supply. Not Bot Horti Agrobo. 47(3), 821-828.
5. Hossain Z., Mustafa G., Komatsu S., 2015. Plant responses to nanoparticle stress. Int J Mol Sci. 16(11), 26644-26653.
6. Handy R.D., Owen R., Valsami-Jones E., 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges and future needs. Ecotoxicology. 17(5), 315-325.
7. Rai M., Ribeiro C., Mattoso L., Duran N. 2015. Nanotechnologies in Food and Agriculture, 1st ed., Springer: Switzerland. pp: 321-342.
8. Singh A.,  Singh N.B., Hussain I., Singh H., Singh S.C., 2015. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent. 4(8), 25-40.
9. Gal J., Hursthouse A., Tatner P., Stewart F., Welton R., 2008. Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environ Int. 34(6), 821-838.
10. Bakkaus E., Gouget B., Gallien J.P., Khodja H., Carrot F., Morel J.L., Collins R., 2005. Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instrum Meth B. 231(1-4), 350-356.
11. Palit S., Sharma A., Talukder G., 1994. Effects of cobalt on plants. Bot Rev. 60(2), 149-181.
12. Chattopadhyay S., Dash S.K., Tripathy S., Das B., Mandal D., Pramanik P., Roy S., 2015. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact. 226, 58-71.
13. Koosha E., Ramezani M., Niazi A., 2018. Determination of cobalt by air-assisted liquid-liquid microextraction, Toxicol Environ Chem. 100(3), 317-325.
14. Khalil A.T., Ovais M., Ullah I., Ali M., Shinwari Z.K., Maaza M., 2020. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem. 13(1), 606-619.
15. Rajjou L., Duval M., Gallardo K., Catusse J., Bally J., Job C., Job D., 2012. Seed germination and vigor. Annu Rev Plant Biol. 63, 507-533.
16. Lee C.W., Mahendra S., Zodrow K., Li D., Tsai Y.C., Braam J., Alvarez P.J., 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem. 29(3), 669-675.
17. Wu S.G., Huang L., Head J., Chen D.R., Kong I.C., Tang Y.J., 2012. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol. 3(4), 126-130.
18. Lu C.M., Zhang C.Y., Wen J.Q., Wu G.R., Tao M.X., 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21, 168-171.
19. Stampoulis D., Sinha S.K., White J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 43(24), 9473-9479.
20. Anjum N.A., Gill S.S., Duarte A.C., Pereira E., 2019. Oxidative Stress Biomarkers and Antioxidant Defense in Plants Exposed to Metallic Nanoparticles. In: Nanomaterials and Plant Potential, 1st ed., Husen A., Iqbal M., Eds. Springer: Switzerland. pp. 427-439.
21. Singh V.P., Singh S., Kumar J., Prasad S.M., 2015. Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged luffa seedlings. Protoplasma. 252(5), 1217-1229.
22. Zhao L., Peng B., Hernandez-Viezcas J.A., Rico C., Sun Y., Peralta-Videa J.R., Tang X., Niu G., Jin L., Varela-Ramirez A., Zhang J.Y., Gardea-Torresdey J.L., 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano. 6(11), 9615-9622.
23. Dolatabadi N., Toorchi M., Valizadeh M., Bandehagh A., 2019. The proteome response of salt-sensitive rapeseed (Brassica napus L.) genotype to salt stress. Not Bot Horti Agrobo. 47(1), 17-23.
24. Wu G.L., Ren G.H., Shi Z.H., 2011. Phytotoxic effects of a dominant weed Ligularia virgaurea on seed germination of Bromus inermis in an alpine meadow community. Plant Ecol Evol. 144(3), 275-280.
25. Maguire J.D., 1962. Speed of germination-aid selection and evaluation for seedling emergence and vigor. Crop Sci. 2, 176-177.
26. Heath R.L., Packer L., 1968. Photoperoxidation in isolated chloroplasts kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1), 189-198.
27. Meir S., Philosoph-Hadas S., Aharoni N., 1992. Ethylene-increased accumulation of fluorescent lipid-peroxidation products detected during senescence of parsley by a newly developed method. J Am Soc Hortic Sci. 117(1), 128-132.
28. Doderer A., Kokkelink I., Van der veen S., Valk B.E., Schram A.W., Douma A.C., 1992. Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta. 1120(1), 97-104.
29. Blois M.S., 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181, 1199-1200.
30. Alexieva V., Sergiev I., Mapelli S., Karanov E., 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24, 1337-1344.
31. Aebi H., 1984. Catalase in vitro. Methods Enzymol. 105, 121-126.
32. Giannopolitis C.N., Ries S.K., 1997. Superoxide dismutase. I. occurrence in higher plants. Plant Physiol. 59(2), 309-314.
33. Nakano Y., Asada K., 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867-880.
34. MacAdam J.W., Nelson C.J., Sharp R.E., 1992. Peroxidase activity in the leaf elongation zone of tall feseue. J Plant Physiol. 99(3), 872-878.
35. Raymond J., Rakariyatham N., Azanza J.L., 1993. Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry. 34(4), 927-931.
36. Beaudoin-Eagan L.D., Thorpe E., 1985. Tyrosine and phenyl alanine ammonialyase activities during shoot initiation in tobacco callus cultures. Plant Physiol. 78(3), 438-441.
37. Bradford M.M., 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 72(1-2), 248-254.
38. Bates L.S., Waldren R.P., Teare I.D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39(1), 205-207.
39. Singleton V.L., Rossi J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 16(3), 144-158.
40. Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H., 2015. Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation. Water, Air, Soil Poll. 226(11), 392.
41. Tripathi D.K., Shweta., Singh S., Singh S., Pandey R., Singh V.P., Sharma N.C., Prasad S.M., Dubey N.K., Chauhan D.K., 2017. An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol. Biochem. 110, 2-12.
42. Donohue K., Rubio de Casas R., Burghardt L., Kovach K., Willis C.G., 2010. Germination, postgermination adaptation, and species ecological ranges. Annu Rev Ecol Evol Syst. 41(1), 293-319.
43. Bossi E., Zanella D., Gornati R., Bernardini G., 2016. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes. Sci Rep. 6, 22254-22263.
44. Shinde S., Paralikar P., Ingle A.P., Rai M., 2020. Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arab J Chem. 13(1), 3172-3182.
45. Mahakham W., Sarmah A.K., Maensiri S., Theerakulpisut P., 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep. 7(1), 8263.
46. Nur Azura M.S., Zamri I., Rashid M.R., Mohd Shahrin G., Rafidah A.R., Mohammad Rejab I., Azima A., Suria M.S., Amyita W.U., 2017. Evaluation of nanoparticles for promoting seed germination and growth rate in MR263 and MR269 paddy seeds. J Trop Agric and Fd Sc. 45(1), 13-24.
47. Ghodake G., Seo Y.D., Lee D.S., 2011. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater. 186(1), 952-955.
48. Faisal M., Saquib Q., Alatar A.A., Al-Khedhairy A.A., Ahmed M., Ansari S.M., Alwathnani H.A., Dwivedi S., Musarrat J., Praveen S., 2016. Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biol Res. 49, 20.
49. Mauro M., Crosera M., Pelin M., Florio C., Bellomo F., Adami G., Apostoli P., De Palma G., Bovenzi M., Campanini M., Filon FL., 2015. Cobalt oxide nanoparticles: behavior towards intact and impaired human skin and keratinocytes toxicity. Int J Environ Res Public Health. 12(7), 8263-8280.
50. Yanik F., Vardar F., 2018. Oxidative stress response to aluminum oxide (Al2O3) nanoparticles in Triticum aestivum. Biologia. 73, 129-135.
51. Jahani S., Saadatmand S., Mahmoodzadeh H., Khavari-Nejad R.A., 2018. Effects of cerium oxide nanoparticles on biochemical and oxidative parameters in marigold leaves. Toxicol Environ Chem. 100(8-10), 677-692.
52. Polishchuk S.D., Nazarova A.A., Kutskir M.V., Churilov D.G., Ivanycheva Y.N., Kiryshin V.A., Churilov G.I., 2015. Ecologic-biological effects of cobalt, cuprum, copper oxide nano-powders and humic acids on wheat seeds. Mod Appl Sci. 9(6), 354-364.
53. Wang H., Kou X., Pei Z., Xiao J.Q., Shan X., Xing B., 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology. 5(1), 30-42.
54. Gzyl J., Rymer K., Gwóźdź E.A., 2009. Differential response of antioxidant enzymes to cadmium stress in tolerant and sensitive cell line of cucumber (Cucumis sativus L.). Acta Biochim Pol. 56(4), 723-727.
55. Ma C., Liu H., Guo H., Musante C., Coskun S.H., Nelson B.C., White J.C., Xing B., Dhankher O.P., 2016. Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano. 3(6), 1369-1379.
56. Jahani S., Saadatmand S., Mahmoodzadeh H., Khavari-Nejad R.A., 2019. Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L.. Biologia. 74(9), 1063-1075.
57. Skórska E., Grzeszczuk M., Barańska M., Wójcik-Stopczyńska B., 2019. Long wave UV-B radiation and asahi SL modify flavonoid content and radical scavenging activity of Zea mays var. Saccharata leaves. Acta Biol Cracov Ser Bot. 61(1), 87-92.
58. Łukasik I., Goławska S., 2019. Biochemical markers of oxidative stress in triticale seedlings exposed to cereal aphids. Acta Biol Cracov Ser Bot. 61(2), 35-46.
59. Soleymanzadeh R., Iranbakhsh A., Habibi G., Oraghi Ardebili Z., 2020. Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biol Cracov Ser Bot. 62(1), 33-42.
60. Ashraf M., Foolad M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 59(2), 206-216.
Volume 12, Issue 2
June 2022
Pages 237-246
  • Receive Date: 18 January 2020
  • Revise Date: 23 October 2020
  • Accept Date: 19 December 2020
  • First Publish Date: 20 December 2020