Response Surface Modeling and Optimization of Effective Parameters for Zn(II) Removal From Aqueous Solution Using Gracilaria Corticata

Document Type: Original Article


Department of Chemistry, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran



Biosorption of Zn(II) from aqueous solution by biomass marine alga, namely Gracilaria corticata was investigated in this paper. Four independent variables, including initial zinc concentration (50-150 mg L-1), initial solution pH (3-7), contact time (10-50 min), and biomass amount (1-2 g/100mL) were studied in the biosorption process. Optimization of the process conditions for maximizing Zn(II) removal from aqueous solutions by Gracilaria corticata was carried out using Box-Behnken design, including response surface methodology (RSM) based on 27 different experimental data. The optimal operating conditions for 95.0% removal of Zn(II) were as follows: initial zinc concentration of 100 mg L-1, initial solution pH of 5, contact time of 30.5 min, and biomass amount of 2 g/100 mL. In addition, the equilibrium isotherms were described by investigation of Langmuir and Freundlich isotherms. The Freundlich adsorption isotherm model well matched the experimental data (R2 = 0.981). The kinetic data fitted pseudo-second order model with a correlation coefficient of 0.9953. Gracilaria corticata was found to be well applicable for zinc removal based on the experimental results.


1. Nazir R., Khan M., Masab M., Rehman H.U., Rauf N.U., Shahab S., Ameer N., Sajed M., Ullah M., Rafeeq M., Shaheen Z., 2015. Accumulation of Heavy Metals (Ni, Cu, Cd, Cr,Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water Collected from Tanda Dam kohat. J Pharm Sci Res. 7(3), 89-97.

2. Plum L.M., Rink L., Haase H., 2010. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res Public Health. 7(4), 1342-1365.

3. Amuda O.S., Giwa A.A., Bello I.A., 2007. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J. 36(2), 174-181.

4. Trivunac K.V., Stevanovic S.M., 2012. Effects of operating parameters on efficiency of lead removal by complexation-microfiltration process. Hem Ind. 66(4), 461-467.

5. Gaikwad R.W., Sapkal V.S., Sapkal R.S., 2010, Ion exchange system design for removal of heavy metals from acid mine drainage wastewater. Acta Montanistica Slovaca Ro─Źník. 15, 298-304.

6. Muthusamy P., Murugan S., Smitha M., 2012. Removal of Nickel ion from Industrial Waste Water using Maize Cob. J Biol Sci. 1(2), 7-11.

7. Maximous N.N., Nakhla G.F., Wan W.K., 2010. Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study. Eng Technol. 4(4), 532-537.

8. Wuana R.A., Okieimen F.E., Imborvungu J.A., 2010. Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Tech. 7(3), 485-496.

9. Kumar R., Bishnoi N.R., Bishnoi G.K., 2008. Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J. 135(3), 202-208.

10. Amini M., Younesi H., Bahramifar N., Zinatizadeh Lorestani A., Ghorbani F., Daneshi A., Sharifzadeh M., 2008. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger.  J Hazard Mater. 154(1-3), 694-702.

11. Jalali R., Ghafourian H., Asef Y., Davarpanah S.J., Sepehr S.R., 2002. Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater. 92(3), 253-262.

12. Bishnoi N.R., Pant A., Garima A., 2004. Biosorption of copper from aqueous solution using algal biomass. J Sci Ind Res. 63(10), 813-816.

13. Zemke-White W.L., Ohno M.J., 1999. World seaweed utilisation: An end-of-century summary. J Appl Phycol. 11(4), 369-376.

14. Esmaeili A., Beirami P., Rustaiyan A., Rafiei F., Ghasemi S., Assadian F., 2007. Evaluation of the Marine Alga Gracilaria Corticata for the Biosorption of Cu (II) from Wastewater in a Packed Column. J of Marine Env Eng. 9(1), 65-73.

15. Esmaeili A., Beirami P., Ghasemi S., 2011. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II) from Wastewater. E-Journal of Chemistry. 8(4), 1512-1521.

16. Johnsi Christobel J., Lipton A.P., 2015. Evaluation of macroalgal biomass for removal of heavy metal Arsenic (As) from aqueous solution. International Journal of Application or Innovation in Engineering & Management (IJAIEM). 4(5), 94-104.

17. Esmaeili A., Saremnia B., Kalantari M., 2015. Removal of mercury(II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata.  Arabian J of Chem. 8(4), 506–511

18. Alam Z., Muyibi S.A., Toramae J., 2007. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. J Environ Sci. 19(6), 674-677.

19. Krishna D., Krishna K.S., Padma Sree R., 2013. Response surface modeling and optimization of chromium (vi) removal from aqueous solution using borasus flabellifer coir powder. Int J Appl Sci and Eng. 11(2), 213-226.

20. Bas D., Boyaci I.H., 2007 Modeling and optimization I: Usability of response surface methodology. J Food Eng. 78(3), 836-845.

21. Ghorbani A., Mesgari abbasi S., Nazarfakhari M., Fakhariyan A., 2013. Optimization of effective parameters for Cd(II) removal from aqueous solutions by red mud using design of experimental (Box-Behnken). J Basic Appl Sci Res. 3(1), 406-412.

22. Box G.E.P., Behnken D.W., 1960. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics. 2(4), 455-475.

23. Macedo S.M., de Jesus R.M., Garcia K.S., Hatje V., Queiroz A.F. de S., Ferreira S.L.C., 2009, Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design. Talanta. 80(2), 974-979.

24. Alam R., Shang J.Q., Cheng X., 2012. Optimization of digestion parameters for analysing the total sulphur of mine tailings by inductively coupled plasma optical emission spectrometry. Environ Monit Assess. 184(5), 3373-3387.

25. Bingol D., Tekin N., Alkan M., 2010. Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Appl Clay Sci. 50(3), 315-321.

26. Haaland P.D. Experimental design in biotechnology, statistics: Textbooks and monographs, Marcel Dekker: New York, 1989.

27. Sharma P., Singh L., Dilbaghi N., 2009. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box–Behnken design. J Hazard Mater. 164(2-3), 1024-1029.

28. Langmuir I., 1916. The constitution and fundamental properties of solids and liquids. Part 1. Solids. Am Chem Soc. 38 (11), 2221-2295.

29. Freundlich H.M.F., 1906. Uber die adsorption in losungen. zeitschrift fur physikalische. Chemie. 57, 385-470.

30. Ofomaja A.E., 2010. Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour. Technol. 101(15), 5868-5876.

31. Ho Y.S., McKay G., 1999, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451-465.

32. Zurina Z., Mohd Salleh M.A., Harun M.Y., Abu Bakar N., 2012. Biosorption of Zn(II) from aqueous solution by jatropha cuecas press cake. J Sci Ind Res. 73(3), 191-194.

33. Marandi R., 2010. Biosorption of Lead (II) and Zinc (II) ions by pre-treated biomass of phanerochaete chrysosporium. Int J Min & Environ. Iss. 1(1), 9-16.

34. Rajoriya S., kaur B., 2014. Adsorptive Removal of Zinc from Waste Water by Natural Biosorbents. Int J Eng Sci. Inven. 3(6), 60-80.

35. Jaafarzadeh N., Mengelizadeh N., Takdastan A., Heidari-Farsani M., Niknam N., 2014. Adsorption of Zn (II) from aqueous solution by using chitin extraction from crustaceous shell. J Adv Environ Health Res. 2(2), 110-119.

36. Deepa C.N., 2013. Removal of Zn (II) ions from aqueous solution and industrial waste water using leaves of Araucaria cookie. Arch Appl Sci Res. 5(4), 117-126.