Controlled Release of Amoxicillin from Bis(2-hydroxyethyl)amine Functionalized SBA-15 as a Mesoporous Sieve Carrier

Document Type : Original Article


1 Department of Chemistry, Yadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

3 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

4 Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran

5 Department of Chemistry, Alzahra University, Tehran, Iran


In this study, Bis (2-hydroxyethyl)amine functionalized mesoporous SBA-15 was synthesized for utilization in amoxicillin drug-delivery. Amoxicillin could absorb on the prepared functionalized SBA-15.  A solution of amoxicillin in a suitable solvent was used for this purpose. Amoxicillin molecules release from the matrix into a simulated body fluid (SBF) solution, and phosphate buffers were studied. UV-Vis spectrophotometric method was chosen for amoxicillin determination. Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), nitrogen adsorption–desorption, and powder X-ray diffraction (XRD) technique were applied for characterization of the synthesized materials. The best loading of amoxicillin was done at pH 8.5 after stirring for 30 minutes. The results showed that, at lower pH, releasing of the drug was done faster than it at higher pH. Also, the average release rate of amoxicillin in the body fluid samples that were simulated was about 7 µg h-1. A highly slow release pattern was observed. The proposed material can be used for enhancing the medical impact of amoxicillin and carrying amoxicillin.


  1. 1.Vojoudi H., Badiei A., Bahar S., Ziarani G.M., Faridbod F., Ganjali M.R., 2017. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. J Magn. Magn Mater. 441, 193-203. https://

    2. Reinert P., Garcia B., Morin C., Badiei A., Perriat P., Tillement O., Bonneviot L., 2003. Cationic Templating with Organic Counterion for Superstable Mesoporous Silica. Stud Surf  Sci Catal 146, 133-136.

    3. Bonneviot L., Morin M., Badiei A., Mesostructured metal or non-metal oxides and method for making Same, Patent WO 01/55031 A1, 2001.

    4. Zhao D., Huo Q., Feng J., Chmelka B.F., Stucky G.D., 1998. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J Am Chem Soc. 120(24), 6024-6036. https://

    5. Trong On D., Desplantier-Giscard D., Danumah C., Kaliaguine S., 2001. Perspectives in Catalytic Applications of Mesostructured Materials. Appl Catal A: Gen., 359(2), 299-357. https://

    6. Ganjali M.R., Daftari A., Hajiagha Babaei L., Badiei A., Saberyan K., Mohammadi Ziarani G., Moghimi A., 2006. Pico Level Monitoring of Silver with Modified Hexagonal Mesoporous Compound (MCM-41) and Inductively Coupled Plasma Atomic Emission Spectrometry. Water Air and Soil Pollut. 173(1), 71-80. https://

    7. Vojoudi H., Badiei A., Amiri A., Banaei A., Ziarani G.M., Schenk-Joß K., 2018. Pre-concentration of Zn (II) ions from aqueous solutions using meso-porous pyridine-enrobed magnetite nanostructures. Food Chem. 257, 189-195. https://

    8. Vojoudi H., Badiei A., Amiri A., Banaei A., Ziarani G.M., Schenk-Joß K., 2018. Efficient device for the benign removal of organic pollutants from aqueous solutions using modified mesoporous magnetite nanostructures. J Phys Chem Solids. 113, 210-219. https: //doi. org /10. 1016/j. jpcs. 2017. 10.029.

    9. Goscianska J., Olejnik A., Pietrzak R., 2013. Adsorption of l-phenylalanine onto mesoporous silica. Mater Chem Physic. 142, 586–593.  https :// 10. 1016/j. matchemphys. 2013.07.057.

    10. Zhu S., Zhou Z., Zhang D., Jin C., Li Z., 2007. Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch, Microporous Mesoporous Mater. 106(1-3), 56–61.  https://doi. org/10.1016/j. micromeso.2007.02.027.

    11. Yu H., Zhai Q.Z., 2009. Mesoporous SBA-15 molecular sieve as a carrier for controlled release of nimodipine. Microporous and Mesoporous Mater. 123, 298–305.

    12. Lebold T., Jung C., Michaelis J., Bräuchle C., 2009. Nanostructured silica materials as drug delivery systems for doxorubicin: single molecule and cellular studies. Nano Lett. 9(8), 2877–2883.

    13. Charnay C., Begu S., Tourne P.C., Nicole L., Lerner D.A., Devoisselle J.M., 2004. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release. Eur J Pharm Biopharm. 57, 533-540. https://doi. org/10.1016/j.ejpb. 2003.12.007.

    14. Vallet M.R., Ramila A., Rea R.P., Parient J.P., 2001. A New Property of MCM-41:  Drug Delivery System. Chem Mater 13(2), 308-311.

    15. Horcajada P., Ramila A., Perez P.Z., Vallet R.M., 2004. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor. Mesopor Mater. 68, 105-109.


    Doadrio A.L., Sousa E.M.B., Doadrio J.C., Pariente J.P., Izquierdo B.I., Vallet R.M., 2004. Mesoporous SBA- HPLC evaluation for controlled gentamicin drug delivery. J Control Release. 97, 125-132. https://doi. org/10.1016 /j.jconrel.2004.03.005.

    17. Vallet R.M., Doadrio J.C., Doadrio A.L., Izquierdo B.I., Pariente J.P., 2004. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics. 172, 435-439.

    18. Prokopowicz M., Żeglinski J., Szewczyk A., Skwira A., Walker G.,  2019. Surface-activated fibre-like SBA-15 as drug carriers for bone diseases. AAPS Pharm Sci Tech. 20,17. 10.1208/s12249-018-1243-5.

    19. Krajnovi´c T., Maksimovi´c-Ivani´c D., Mijatovi´c S., Draˇca D., Wolf K., Edeler D., Wessjohann L. A., Kalu_erovi´c G. N., 2018. Drug delivery system for emodin based on mesoporous silica SBA-15, Nanomater. 8, 322-338. 10.3390/nano8050322.

    20. Jangra S., Girotra P., Chhokar V., Tomer V. K., Sharma A. K., Duhan S., 2016. In-vitro drug release kinetics studies of mesoporous SBA-15-azathioprine composite. J Porous Mater.

    21. Jesus R.A., Mesquita M. E., Rabelo A. S., Figueiredo R. T., Araújo A. A.S., Cides Da Silva L. C., Codentino I. C., Fantini M. C.A., Araújo G. L.B., 2016. Synthesis and application of the MCM-41 and SBA-15 as matrices for in vitro efavirenz release study Citation Data. J Drug Delivery Sci Technol. 31, 153-159. http://doi. org/10.1016 /j.jddst.2015.11. 008.

    22. Mohamadnia Z., Ahmadi E., Ghasemnejad M., Hashemikia S., Doustgani A., 2015. Surface modification of mesoporous nanosilica with [3-(2-Aminoethylamino) propyl] trimethoxysilane and its application in drug delivery. Int J Nanosci Nanotechnol. 11(3), 167-177.

    23. Doadrio J.C., Sousa E.M.B., Isabel I.B., Doadrio A.L., Pariente P.J., Vallet R.M., 2006. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J Mater Chem. 16, 462-466.

    24. Lehto V.P., Heikkila K.V., Paski J., Salonen J., 2005. Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles. J Therm Anal Calorimetry. 80, 393-397.

    25. Kim H.J., Ahn J.E., Haam S.J., Shul Y.G., Song S.Y., Tatsumi T.S., 2006. Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting. J Mater Chem. 17, 1617-1621.

    26. Zhu Y.F., Shi J.L., Shen W.H., Chen H.R., Dong X.P., Ruan M.L., 2005. Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnology. 16, 2633 - 2638.

    27. Kim J.Y., Lee J.E., Lee J.W., Yu J.H., Kim B.C., An K.W., Hwang Y.S., Shin C.H., Park J.G., Kim J.B., Hyeon T., 2006. Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. J Am Chem Soc. 128, 688-689. http://doi. org/10. 1021/ja0565875.

    28. Li Y., Song F., Guo Y., Cheng L., Chen Q., 2018. Multifunctional amine mesoporous silica spheres modified with multiple amine as carriers for drug release. J Nanomater. ID: 1726438. https://doi .org /10. 1155/2018/1726438.

    29. Janos F., Robin G.C., 2006. Analogue-based Drug Discovery, John Wiley & Sons: New York, ISBN 9783527607495Archived from the original on 2017-09-08. pp. 490.

    30. Jiben R., 2012. An introduction to pharmaceutical sciences production, chemistry, techniques and technology. Cambridge: Woodhead, ISBN: 9781908818041. Archived from the original on 2017-09-08. pp. 239. 

    31. World Health Organization "WHO model list of essential medicines (19th List). 2015. Archived (PDF) from the original on 13 December 2016.

    32. Deirdre K., 2008. Diseases of the liver and biliary system in children, 3 ed., Wiley-Blackwell: Chichester,  ISBN 9781444300543Archived from the original on 2017-09-08. pp. 217.

    33. Sevimli F., Yılmaz A., 2012. Surface functionalization of SBA-15 particles for amoxicillin delivery. Microporous and Mesoporous Mater. 158, 281–291.

    1. 34.  Fathi Vavsari V., Mohammadi Ziarani G., Badiei A., 2015. The role of SBA-15 in drug delivery. RSC Adv., 5, 91686-91707.

    35. Vojoudi H., Badiei A., Bahar S., Ziarani G.M., Faridbod F., Ganjali M. R., 2017. Post-modification of nanoporous silica type SBA-15 by bis (3-triethoxysilylpropyl) tetrasulfide as an efficient adsorbent for arsenic removal. Powder Technol. 319, 71-278.

    36. Hashemi P., Shamizadeh M., Badiei A., Poor P.Z., Ghiasvand A.R., Yarahmadi A., 2009. Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction. Anal Chim Acta. 646, 1-5. 

Volume 9, Issue 3
September 2019
Pages 253-261
  • Receive Date: 27 November 2018
  • Revise Date: 05 October 2019
  • Accept Date: 19 February 2019
  • First Publish Date: 30 September 2019