Momordica Foetida (Cucurbitaceae) Extract Alleviates Parastar (Insecticide) -Induced Toxicity on Pancreatic and Duodenal α-amylase Activity in Male Rats

Document Type: Original Article

Authors

1 Department of Biochemistry, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

2 Department of Biological Sciences, Faculty of Science, University of Bamenda, POBox 39, Bambili, Cameroon

3 Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, PO Box 63 Buea, Cameroon

4 Faculty of Sciences, University of Caen Normandy (UNICAEN), EA 2608, OeReCa, F-14032 Caen, France

Abstract

Parastar is a pesticide formulation made up of two insecticides lamda-Cyhalothrin and Imidacloprid. Parastar is one of the frequently used agrochemicals in the North West Region of Cameroon to protect crops. However, exposures to pesticides resulting in health alteration as well as therapeutic effects of medicinal plants have been largely acknowledged. One of such plants is Momordica foetida, which exhibits antidiabetic and antioxidant properties, suggesting its possible efficiency in toxicity alleviation. This study was designed to evaluate the effect of Parastar on pancreatic and duodenal α-amylase activity, and assess the protective effects of the methanol extract of M. foetida in albino male rats. Groups of 8 rats each were orally intubated with either distilled water (5 mL/kg), Parastar (6.23 mg/kg) alone or combination of Parastar and M. foetida (50 - 200 mg/kg) daily for 64 days. Once the follow-up period was over, animals were sacrificed, the pancreas and duodenum excised out and weighed. The pancreatic and duodenal homogenates were prepared and used for assessment of α-amylase activity. Results revealed increased pancreas weight in animals treated with Parastar. However, the latter variation was prevented when the animals were co-administered with M. foetida extract and the pesticide. Parastar decreased pancreatic and duodenal α-amylase activity, which was also prevented by co-treatment of the animals with the methanol extract of M. foetida. These findings highlight the toxicity of Parastar on pancreatic and duodenal functions and support the use of M. foetida in protecting against alteration of the digestive system by the pesticide.

Keywords


1. Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L., 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front Public Health. 4, 148. doi: 10. 3389 /fpubh .2016. 00148

2. Nantia E.A., Manfo T.F.P., Sonchieu J., Choumessi T.A., Bopuwouo R.H., Kakwang F.I., Lum F.D., Kenfack A., 2017. Effect of agrochemicals use on total phenolic compounds and flavonoid content in aromatic fresh herbs from Santa (Cameroon).  Acad J Agric Res. 5(2), 018-027.

3. Sonchieu J., Ngassoum M.B., Nantia A.E., Laxman P.S., 2017. Pesticide Applications on Some Vegetables Cultivated and Health Implications in Santa, North West-Cameroon. SSRG Int J Agric Env Sci. 4(2), 39-46.

4. Abhilash P.C., Singh N., 2009. Pesticide use and application: An Indian scenario. J Hazard Mater. 165, 1–12.

5. Manfo F.P., Moundipa P.F., Déchaud H., Tchana A.N., Nantia E.A., Zabot M.T., Pugeat M., 2012. Effect of Agropesticides use on male reproductive function: A study on farmers in Djutitsa (Cameroon). Environ Toxicol. 27(7), 423-32.

6. Ménard D., 2004. Functional development of the human gastrointestinal tract: Hormone- and growth factor-mediated regulatory mechanisms. Can J Gastroenterol. 18(1), 39-44.

7. Butterworth P.J., Warren F.J., Ellis P.R., 2011. Human α-amylase and starch digestion: An interesting marriage. Starch – Stärke. 63(7), 395–405.

8. Keller P.J., Allan B.J., 1967. The protein composition of human pancreatic juice. J Biol Chem. 242, 281–287.

9. Nichols B.L., Avery S., Sen P., Swallow D.M., Hahn D., Sterchi E., 2003. The maltase-glucoamylase gene: common ancestry to sucraseisomaltase with complementary starch digestion activities. Proc Natl Acad Sci U.S.A. 100, 1432–1437.

10. Nickavar B., Abolhasani L., 2013. Bioactivity-guided separation of an -amylase inhibitor flavonoid from Salvia virgata. Iran J Pharm Res. 12, 57–61.

11. Yadav R., Bhartiya J.P., Verma S.K., Nandkeoliar M.K., 2013. The evaluation of serum amylase in the patients of type 2 diabetes mellitus, with a possible correlation with the pancreatic functions. J Clin Diagn. Res. 7, 1291–1294.

12. Saadati M., Mirzaei M., 2016. Insecticide-Enzyme Interaction: Cypermethrin, Chlorpyrifos, Diazinon and Deltamethrin with α-amylase and lipase in the Gut of Sunn Pest, Eurygaster integriceps. Biol Syst Open Access. 5, 168. doi:10.4172/2329-6577.1000168

13. Deborah V.B., Mohiddin J.M., Madhuri J.R., 2013. Interaction effects of selected pesticides on soil enzymes. Toxicol Int. 20(3), 195–200.

14. Froelich S., Onegi B., Kakooko A., Siems K., Schubert C., Jenett-Siems K., 2007. Plants traditionally used against malaria: phytochemical and pharmacological investigation of Momordica foetida. Braz J Pharmacog. 17(1), 01-07.

15. Osinubi A.A., Enye L.A., Adesiyun A.E., Ajayi G.O., 2008. Comparative effects of three herbs and standard hypoglycaemic agents on blood glucose in normoglycaemic, hyperglycaemic and alloxan-induced diabetic male rats. AJEM 7(1), 5-11.

16. Acquaviva R., Di Giacomo C., Vanella L., Santangelo R., Sorrenti V., Barbagallo I., Genovese C., Mastrojeni S., Ragusa S., Iauk L., 2013. Antioxidant activity of extracts of Momordica Foetida Schumach. et Thonn Molecules. 18, 3241-3249.

17. Molehin O.R., Adefegha S.A., 2014. Comparative study of the aqueous and ethanolic extract of Momordica foetida on the phenolic content and antioxidant properties. Int Food Res J. 21(1), 401-405.

18. Nantia A.E., Soh D., Choumessi T.A., Ngum N.N.M., Chi H.A.N., Kenfack A., 2018. In vitro antioxidant property of the methanol extracts of the whole plant and fruit of Momordica foetida (Cucurbitaceae). The Pharmaceutical and Chemical Journal. 5(6); 117-125.

19. Nantia A.E., Kada S.A., Manfo T.F.P., Tangu N., Kaghou M.M., Mbouobda H.D., Kenfack A., 2018. Parastar insecticide induced changes in reproductive parameters and testicular oxidative stress biomarkers in Wistar male rats. Toxicol Ind Health 34(7), 499–506.

20. Odunlade A.K., Nwaoha O.C., Ashade O.O., Ojokuku S.A., Taiwo I.A., Adebambo A.O., Adeoye A.A., 2014. Teratogenic effect of the ethanolic leaf extract of Momordica foetida schum (Cucurbitaceae) on the morphology of foetal sprague dawley rats. Carib J Sci Tech. 2, 471-481.

21. Ndah G., Fonteh A.F., Yamssi C., Poné W.J., 2017. Phytotherapy of Djallonke Lambs Co-infected with Teladorsagia circumcincta and Trichostrongylus colubriformis (Trichostrongylidae) using methanol extracts of two medicinal plants in Menoua division, West Region of Cameroon. European J Med Plants. 21(3), 1-15.

22. Gornall A.G., Bardwill G.S., David M.M., 1949. Determination of serum protein by means of biuret reactions. J Biol Chem. 177, 751–766.

23. Huggins C., Russell S.P., 1948. Colorimetric determination of amylase. Ann Surg. 128(4), 666-678.

24. Henrissat B., 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 280 (Pt 2), 309-16.

25. Robyt J.F., French D., 1967. Multiple attack hypothesis of α-amylase action: Action of porcine pancreatic, human salivary and Aspergillus oryzae α-amylases. Arch Biochem Biophys. 122, 8–16.

26. Whitcomb D.C., Lowe M.E., 2007. Human pancreatic digestive enzymes. Dig Dis Sci. 52(1), 1-17.

27. Makrides C., Koukouvas M., Achillews G., Tsikkos S., Vounou E., Symeonides M., Christodoulides P., Ioannides M., 2005. Methomyl-Induced severe acute pancreatitis: Possible Etiological Association. JOP J Pancreas (Online). 6(2), 166-171.

28. Yoshida S., Okada H., Nakano S., Shirai K., Yuhara T., Kojima H., Doi T., Kato H., Suzuki K., Morishita K., Murakami E., Ushikoshi H., Toyoda I., Ogura S., 2015. Much caution does no harm! Organophosphate poisoning often causes pancreatitis. J Intensive Care. 3(1), 21-25.

29. Salame N.R., Wani S.A., 2017. Study of serum amylase levels in organophosphate poisoning. Int J Biomed Adv Res. 8(12), 450-454.

30. Pandol J.S., 2015. Normal pancreatic function. Pancreapedia: Exocrine pancreas knowledge Base. DOI: 10.3998/panc.2015.17

31. Quancai S., 2017. Imidacloprid, a neonicotinoid insecticide, impairs lipid and glucose metabolism. Doctoral Dissertations 1130. https :// scholarworks. umass.edu/ dissertations_2/1130. Accessed December. 12, 2018.

32. Afolayan J.A., Sunmonu O.T., 2010. In vivo Studies on antidiabetic plants used in South African Herbal Medicine. J Clin Biochem Nutr. 47, 98–106.

33. Tsabang N., Fongnzossié E., Keumeze V., Jiofack R., Njamen D., Sonwa D.J., Nguelefack B.T., 2017. Ethnomedical and ethnopharmacological study of plants used by indigenous people of Cameroon for the treatments of diabetes and its signs, symptoms and complications. J Mol Biomark Diagn. 8(1), 1-5. doi: 10.4172/2155- 9929.1000310

34. Hart P.A., Conwell D.L., 2017. Secretion of the human exocrine pancreas in health and disease. Pancreapedia: Exocrine pancreas knowledge base. DOI: 10.3998/ panc.2017.05

 35. Epriliati I., Ginjom R.I., 2012. Bioavailability of phytochemicals. In: Phytochemicals - a global perspective of their role in nutrition and health, Rao V, ed., InTech, Rijeka, Croatia. pp. 401-428.

36. Demirin H., Gökalp O., Kaya E., Büyükvanli B., Cesur G., Özkan A., Kaya M., 2013. Phosalone toxicity on liver and pancreas: Role of vitamins E and C. Asian J Chem. 25(5), 2589-2592.

37. El-Habiby M.M., El-Sherif N.M., El-Akabawy G., Tayel S.G., 2017. Protective effect of garlic oil on furan-induced damage in the pancreas of adult male rat. Menoufia Med J.  30, 262-70.