Application of Modified Nanocellulose with 2-aminopyrimidine as a New Sorbent for Separation and Determination of Trace Amounts of Nickel Ions in Human Blood and Urine

Document Type: Original Article


Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran


In the present study, trace amount of nickel (II) ions in real samples has been separated, preconcentrated and determined by a synthesized nanocomposite. Our suggested nanocomposite was prepared by immobilization of 2-aminopyrimidine on nanocellulose. The properties of nanocomposite were characterized by TEM, TGA, elementalanalysis CHNS, EDS, and BET techniques. The effective factors such as pH, nanocomposite amount, extraction time, eluent type, ionic strength and sample volume were optimized for quantitative determination of nickel (II) ions. The linear range of the calibration graph was between 5 and 500 ng mL−1 with limit of detection (LOD) 2.33 ng mL−1. Relative standard deviations (RSD) were 2.33%. Modified nanocellulose was used for measurement of the trace amounts of Ni (II) ions in the real samples such as human blood and urine with suitable fallouts.


1. Safavi A., Iranpoor N., Saghir N., Momeni S., 2006. Glycerol–silica gel: a new solid sorbent for preconcentration and determination of traces of cobalt (II) ion. Anal Chim Acta. 569, 139–144.

2. Safavi A., Abdollahi H., Hormozi-Nezhad M.R., Kamali R., 2004. Cloud point extraction, precocentration and simultaneous spectrophotometric determination of nickel and cobalt in water samples. Spectrochim Acta. 60A, 2897–2901.

3. Manzoori J.L., Bavali-Tabrizi A., 2003. Cloud point preconcentration and flame atomic absorption spectrometric determination of cobalt and nickel in water samples. Microchim Acta. 141, 201–207.

4. Templeton D., 1990. Biological Monitoring of Chemical Exposure in the Workplace, World Health Organization. Geneva.

5. Nielsen G.D., Soderberg U., Jorgensen P.J., Templeton D.M., Rasmussen S.N., Andersen K.E., 1999. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity. Toxicol Appl Pharmacol. 154, 67–75.

6. Kristiansen J., Cristensen J.M., Henriksen T., Nielsen N.H., Menne T., 2000. Determination of nickel in fingernails and forearm skin (stratum corneum). Anal Chim Acta. 403, 265–272.

7. Rezaee M., Assadi Y., Milani Hosseini M.R., Aghaee E., Ahmadi F., Berijani S., 2006. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A. 1161, 1–9.

8. Jiang H., Qin Y., Hu B., 2008. Dispersive phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta. 74, 1160–1165.

9. Mirabi A., Shokouhi-Rad A., Nourani S., 2015. Application of Modified Magnetic Nanoparticles as a Sorbent for Preconcentration and Determination of Nickel Ions in Food and Environmental Water Samples. TrAC Trends Anal Chem. 74, 146-151.

10. Zachariadis G.A., Anthemidis A.N., Bettas P.G., Stratis J.A., 2002. Determination of lead by on-line solid phase extraction using a PTFE micro-column and flame atomic absorption spectrometry. Talanta. 57, 919-926

11. De Mattos J.C.P., Nunes A.M., Martins A.F., Dressler V.L., De Moraes-Flores E.M., 2005. Influence of citric acid as chemical modifier for lead determination in dietary calcium supplement samples by graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B. 60, 687-692.

12. Cabon J.Y., 2002. Determination of Cd and Pb in seawater by graphite furnace atomic absorption spectrometry with the use of hydrofluoric acid as a chemical modifier. Spectrochim. Acta Part B. 57, 513-524.

13. Koksal J., Synek V., Janos P., 2002. Extraction-spectrometric determination of lead in high-purity aluminium salts. Talanta. 58, 325-330.

14. Ndungu K., Hibdon S., Flegal A.R., 2004. Determination of lead in vinegar by ICP-MS and GFAAS: evaluation of different sample preparation procedures. Talanta. 64, 258-263.

15. Gonzales A.P.S., Firmino M.A., Nomura C.S., Rocha F.R.P., Oliveira P.V., Gaubeur I., 2009. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal Chim Acta. 636, 198-204.

16. Bulbul M., Unak P., Sisman A.R., Coker C., 2006. Blood levels of Cd, Pb, Cu, Zn, Fe, Mg, Ca and P in tobacco workers. Fresenius Environ. Bull. 15, 1477–1483.

17. Casas J.S., Sordo J., 2006. Lead: chemistry, analytical aspects, in: Environmental Impact and Health Effects. Elsevier. Amsterdam.

18. Mirabi A., Rad A.S., Abdollahi M., 2017. Preparation of Modified MWCNT with Dithiooxamide for Preconcentration and Determination of Trace Amounts of Cobalt Ions in Food and Natural Water Samples. Chemistry Select. 2, 4439–4444.

19. Mirabi A., Dalirandeh Z., Rad A.S., 2015. Preparation of modified magnetic nanoparticles as a sorbent for the Preconcentration and determination of Cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry. ‎J Magn Magn Mater. 381, 138-144.

20. Mirabi A., Rad A.S., Khodadad H., 2015. Modified surface based on magnetic Nano composite of Dithiooxamide/Fe3O4 as a sorbent for Preconcentration and determination of trace amounts of Copper. ‎J Magn Magn Mater. 389, 130-135.

21. Mirabi A., Rad A.S., Khanjari Z., Moradian M., 2017. Preparation of SBA-15/Graphene oxide  nanocomposites for Preconcentration and determination of trace amounts of rutoside in blood plasma and urine. Sensors and Actuators B: Chem, 253, 533-541.

22. Afzali D., Taher M.A., Mostafavi A., Mohammadi Mobarakeh S.Z., 2005. Thermal modified Kaolinite as useful material for separation and preconcentration of trace amounts of manganese ions. Talanta. 65, 476-480.

23. Taher M.A., Puri B.K., Bansal R.K., 1998. Simultaneous Determination of Cadmium and Lead in Real and Environmental Samples by Differential Pulse Polarography after Adsorption of Their 2-Nitroso-1-naphthol-4-sulfonic acid–Tetradecyldimethylbenzylammonium Ion-Associated Complex on Microcrystalline Naphthalene. Microchem J. 58, 21-30.

24. Shokrollahi A., Ghaedi M., Hossaini O., Khanjari N., Soylak M., 2008. Cloud point extraction and flame atomic absorption spectrometry combination for copper (II) ion in environmental and biological samples. J Hazard Mater. 160, 435-440.

25. Candir S., Narin I., Soylak M., 2008. Ligandless cloud point extraction of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd (II) ions in environmental samples with Tween 80 and flame atomic absorption spectrometric determination. Talanta. 77, 289-293.

26. Tuzen M., Melek E., Soylak M., 2006. Celtek clay as sorbent for separationpreconcentration of metal ions from environmental samples. J Hazard Mater. 136, 597–603.

27. Soylak M., 2002. Nickel determination in samples with high salt content by atomic absorption spectrometry after enrichment/separation on Diaion HP-20. Quim Anal. 20, 175–179.

28. Gustavo Rocha de C., Ilton Luiz de A., Paulo dos Santos R., 2004. Synthesis, characterization and determination of the metal ions adsorption capacity of cellulose modified with p-aminobenzoic groups. Mater. Res. 7, 329–334.

29. Ghaedi M., Shokrollahi A., Ahmadi F., 2007. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater. 142, 272–278.

30. Gode F., Pehlivan E., 2006. Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J Hazard Mater. 136, 330–337.

31. Mirabi A., Rad A.S., Jamali M.R., Danesh N., 2016. Use of modified Y-Alumina Nanoparticles for the Extraction and Preconcentration  of Trace Amounts of Cadmium Ions. Aust J Chem. 69, 314-318.

32. Saeed M.M., Ahmed R., 2006. Temperature effected sorption of europium(III) onto 1-(2-pyridylazo)-2-naphthol impregnated polyurethane foam. J Radioanal Nucl Chem. 267, 147–153.

33. Manouchehri N., Bermond A., 2006. Study of trace metal partitioning between soil-EDTA extracts and Chelex-100 resin. Anal Chim Acta. 557, 337–343.

34. Cesur H., Bati B., 2002. Solid-phase extraction of copper with lead 4-benzylpiperidinedithio-carbamate on microcrystalline naphthalene and its spectrophotometric determination. Turk J Chem. 26, 599–606.

35. Mirabi A., Hosseini S.N., 2012. Use of modified nanosorbent materials for extraction and determination of trace amounts of copper ions in food and natural water samples. Trends Appl Sci Res. 7, 541–549.

36. Tuzen M., Soylak M., 2004. Column system using diaion HP-2MG for determination of some metal ions by flame atomic absorption spectrometry. Anal Chim Acta. 504, 325–334.

37. Paako M., Ankerfors M., Kosonen H., Nykanen A., Ahola S., Osterberg M., Ruokolainen J., Laine J., Larsson P.T., Ikkala O., Lindstrom T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8, 1934-1941.

38. Matsumiya H., Kageyama T., Hiraide M., 2004. Multielement preconcentration of trace heavy metals in seawater with an emulsion containing 8-quinolinol for graphite-furnace atomic absorption spectrometry. Anal Chim Acta. 507, 205–209.

39. Jiang H., Qin Y., Hu B., 2008. Dispersive phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta. 74, 1160–1165.

40. Manzoori J.L., Bavali-Tabrizi A., 2003. Cloud point preconcentration and flame atomic absorption spectrometric determination of cobalt and nickel in water samples. Microchim Acta. 141, 201–207.

41. Lemos V.A., Novaes C.G., Lima A.D.S., Vieira D.R., 2008. Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples. J Hazard Mater. 155, 128–134.

42. Tewari P.K., Singh A.K., 2000. Amberlite XAD-7 impregnated with Xylenol Orange: a chelating collector for preconcentration of Cd(II), Co(II), Cu(II), Ni(II), Zn(II) and Fe(III) ions prior to their determination by flame AAS. Fresen J Anal Chem. 367, 562-567.

43. Arpa C., Bektas S., 2006. Preconcentration and Determination of Lead, Cadmium and Nickel from Water Samples Using a Polyethylene Glycol Dye Immobilized on Poly(hydroxyethylmethacrylate) Microspheres Anal Sci. 22, 1025-1029.