Effect of Sulfur Application on Growth, Photosynthetic Pigments, Antioxidant Activity and Arsenic Accumulation in Coriander (Coriandrum sativum) under Arsenic Stress

Document Type: Original Article

Authors

Department of plant sciences, Damghan University and Biology Institute, Damghan, Iran

Abstract

Soils polluted with toxic elements are one of the major environmental problems in human societies. Sulfur (S), an essential element for the growth and development plants, plays an important role in reducing the toxicity of toxic elements as arsenic. In this study, the role of Sulfur different regimes (0, 50, 100 and 150 mg per kg) in reducing arsenic (As) toxicity in coriander (Coriandrum sativum) was investigated.  The obtained results indicated that Sulfur application increased the activities of antioxidant enzymes and photosynthetic pigments, but it’s decreased the arsenic induced oxidative stress. Reduction of shoot and root biomass occurred in presence of sulfur different regimes and As various concentrations. S supplement under high As concentration increased protein content of shoot. Different S regimes resulted in enhanced both shoot and root As accumulation. Meanwhile, different treatments of sulfur allowed high translocation of As quantities from root to shoot.  It is well illustrated that phytoextraction is one of the best methods for toxic metals phytoremediation. Thus from present study it is evident that the phytoremediation ability of plants for accumulates toxic metals may be enhanced through exogenous sulfur application.

Keywords


1. Bai Bourdie M., 2003. Soil Physics. Tehran University Press. Seventh edition. 470 pages. (In Persian).

2. Raskin I., Kumar P.B.A.N., Dushenkov S., Salt D.E., 1994. Bioconcentration of heavy metals by plants. Curr Opin Biotechnol. 5(3), 285–290.

3. Shen Z., Li X., Wang C., Chen H., Chua H., 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual. 31(6), 1893–1900.

4. Chatterjee J., Chatterjee C., 2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut. 109(1), 69–74.

5. Öncel I., Keleş Y., Üstün A.S., 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut. 107(3), 315–320.

6. Chibuike G.U., Obiora S.C., 2014. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl Environ Soil Sci. http://dx.doi.org/10.1155/2014/752708.

7. Djingova R., Kuleff I., 2000. Instrumental techniques for trace analysis, in Trace Elements: Their Distribution and Effects in the Environment, J.P. Vernet, Ed., Elsevier, London, UK.

8. Barrachina A.C., Carbonell F.B., Beneyto J.M., 1995. Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nutr. 18(6), 1237–1250.

9. Ahmad I., Akhtar M.J., Zahir Z.A., Jamil A., 2012. Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak J Bot. 44(5), 1569–1574.

10. Jayakumar K., Rajesh M., Baskaran L., Vijayarengan P., 2013. Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride. Int J Food Sci Nutr. 4(2), 62–69.

11. Sharma D.C., Sharma C.P, 1993. Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun. 21(4), 317–322.

12. Sheldon A.R., Menzies N.W., 2005. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil. 278(1-2), 341–349.

13. Shekar C.H.C., Sammaiah D., Shasthree T., Reddy K.J., 2011. Effect of mercury on tomato growth and yield attributes. Int J Pharma Bio Sci. 2(2), B358–B364.

14. Shenker M., Plessner O.E., Tel-Or E., 2004. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol. 161(2), 197–202.

15. Pandolfini T., Gabbrielli R., Comparini C., 1992. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ. 15(6), 719–725.

16. Moustakas M., Lanaras T., Symeonidis L., Karataglis S., 1994. Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica. 30(3), 389–396.

17. Doncheva S., Stoynova Z., Velikova V., 2001. Influence of succinate on zinc toxicity of pea plants. J Plant Nutr. 24(6), 789–804.

18. Assche F., Clijsters H., 1990. Effects of metals on enzyme activity in plants. Plant Cell Environ. 24, 1–15.

19. Jadia C.D., Fulekar M.H., 2009. Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol. 8(6), 921–928.

20. Taiz L., Zeiger E., 2002. Plant Physiology, Sinauer Associates, Sunderland, Mass, USA.

21. Schaller A., Diez T., 1991. Plant specific aspects of heavy metal uptake and comparison with quality standards for food and forage crops. in Der Einfluß von festen Abfällen auf Böden, Pflanzen: Sauerbeck D., Lübben S., Eds., KFA, Jülich, Germany. pp. 92–125.

22. EPA, 2001. Drinking Water Standards for Arsenic. United States Environmental Protection Agency 815-F-00-015.

23. Garbisu C., Alkorta I., 2003. Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot. 3(1), 58–66.

24. Baker A., McGrath S.P., Reeves R.D., Smith J.A.C., 2000. Metal hyper accumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. pp. 85-107. In: Terry, N. and Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water, CRC Press LLC, USA.

 25. Blaylock, M.J., Salt D.E., Doschenkov S., Zakhrova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I., 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol. 31, 860-865.

26. Huang J.W., Cunningham S.D., 1997. Lead phytoextraxction spicies variation in lead uptake and translocation. New Phytol. 134, 75-84.

27. Kayser A., Wenger K., Keller A., Attinger W., Felix H.R., Gupta S.K., Schulin R., 2000. Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: The use of NTA and sulfur amendments. Environ Sci Technol. 34, 1778–1783.

28. Gupta P., 1999. Soil, plant, water and fertilizer analysis. 2rd ed., Agro Botanical.

29. Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382.

30. Bradford M.M, 1975. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 7, 248-254.

31. Plewa M.J., Smith S.R., Wagner E.D., 1991. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res. 247(1), 57-64.

32. Dhindsa R.S., Plumba-Dhindsa P., Thorpe T.A., 1981. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J Exp Bot. 32(1), 93-101.

33. Dixit G., Singh A.P., Kumar A., Singh P.K., Kumar S., Dwivedi S., Tripathi R.D., 2015. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater. 298, 241-251.

34. Zu Y.Q., Sun J.J., He Y.M., Wu J., Feng G.Q., Li Y., 2016. Effects of arsenic on growth, photosynthesis and some antioxidant parameters of Panax notoginseng growing in shaded conditions. Int J Adv Agric Res. 4, 78-88.

35. Khudsar T., Soh W.Y., Iqbal M., 2000. Morphological and anatomical variations of Cajanus cajan (Linn.) huth raised in cadmium-rich soil. J Plant Biol. 43(3), 149-157.

36. Gajewska E., Sklodowska M., 2007. Effect of nickel on ROS content and oxidative enzyme activities in wheat leaves. Bio Metals. 20, 27-36.

37. Zhong L., Hu C., Tan Q., Liu J., Sun X., 2011. Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant soil environ. 57(9), 429–434.

38. Taji H., Golchin A., 2011. Effect of different levels of cadmium and sulfur on yield, cadmium concentration and micronutriets of corn (Zea Mays L.) leaves and roots under greenhouse conditions. J Sci Tech Greenhouse Culture. 1(4), 23-33. In Persian.

39. Kumawat R.N., Nathawat N.S., Mahatma M.K., 2006. Effect of Sulfur and Iron on Enzymatic Activity and Chlorophyll Content of Mungbean (Vigna radiate L.). J Plant Nutr. 29, 1451–1467.

40. Srivastava S., Srivastavab A.K., Singh B., Suprasanna P., D’souza S.F., 2013. The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biologia Plantarum. 57 (2), 385-389.

41. Li W.X., Chen T.B., Huang Z.C., Lei M., Liao X.Y., 2006. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere. 62, 803-809.

42. Stoeva N., Berova M., Zlatev Z., 2005. Effect of arsenic on some physiological parameters in bean plants. Biol Plant. 49(2), 293-296.

43. Journet E.P., Bligny R., Douce R., 1986. Biochemical changes during sucrose deprivation in higher plant cells. J biol Chem. 261, 3193-3199.

44. Dave R., Tripathi R.D., Dwivedi S., Tripathi P., Dixit G., Sharma Y.K., Trivedi P.K., Corpas F.J., Barroso J.B., Chakrabarty D., 2013. Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater. 262, 1123–1131.

 45. Dixit G., Singh A.P., Kumar A., Dwivedi S., Deeba F., Kumar S., Suman S., Adhikari B., Shukla Y., Trivedi P.K., Pandey V., Tripathi R.D., 2015. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep. 5(16205), 1-16.

46. Srivastava S., D’souza S.F., 2009. Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (Lf) Royle. Environ Sci Technol. 43, 6308–6313.

47. Rodríguez‐Serrano M., Romero-Puertas M.C., Zabalza A., Corpas F.J., Gómez M., Del Río L.A., Sandalio L.M., 2006. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ. 29, 1532–1544.

48. Srivastava S., Mishra S., Tripathi R.D., Dwivedi S., Trivedi P.K., Tamdon P.K., 2007 .Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (Lf) Royle. Environ Sci Technol. 41, 2930–2936.

49. Noctor G., Gomez L., Vanacker H., Foyer C.H., 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot. 53, 1283–1304.

50. Merlin T.P.A., Lima G.P.P., Leonel S., Vianello F., 2012. Peroxidase activity and total phenol content in citrus cuttings treated with different copper sources. S Afr J Bot. 83, 159-164.

51. Karataglis S., Moustakas M., Symeonidis L., 1991. Effects of heavy metals on isoperoxidases of wheat. Biol Plant. 33, 3-9.

52. Mylona P.V., Polidoros A.N., Scandalios J.G., 1998. Modulation of antioxidant responses by arsenic in maize. Free Radical Biol Med. 25, 576-585.

53. Y.Q. Zu, Sun J.J., He Y.M., Wu J., Feng G.Q., Li Y., 2016. Effects of arsenic on growth, photosynthesis and some antioxidant parameters of Panax notoginseng growing in shaded conditions. Int J Adv Agric Res. 4, 78-88.

54. Kim Y.Y., Yang Y.Y., Lee Y., 2002. Pb and Cd uptake in rice roots. Physiol Plant. 116(3), 368-372.

55. Poozesh V., Tagharobiyan M., 2015. Hydroponic Phytoremediation of Nickel by Coriander (Coriandrum sativum). J Chem Health Risks. 5(4), 273-284.

56. Saroha M.S., Singh H.G., 1979. Effect of prevention of iron chlorosis on the quality of sugarcane grown on Vertisols. Plant Soil. 52, 467–473.

57. McGrath S.P., Zhao F.J., 1996. Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J Agric Sci. 126, 53–62.

58. Zhao F.J., Hawkesford M.J., Warrilow A.G.S., McGrath S.P., Clarkson D.T., 1996. Responses of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency. Plant Soil. 181, 317–327.

59. Dixit G., Singh A.P., Kumar A., Mishra S., Dwivedi S., Kumar S., Trivedi P.K., Pandey V., Tripathi R.D., 2016. Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem. 99, 86-96.