Synthesis of Hydroxyapatite/Ag/TiO2 Nanotubes and Evaluation of Their Anticancer Activity on Breast Cancer Cell Line MCF-7

Authors

1 Department of Chemistry, College of Basic science, Yadegar-e-Imam Khomeini (RAH( Shahre Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Biology, College of Basic Science, Yadegar-e-Imam Khomeini(RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran

Abstract

In this research, TiO2 nanotubes were synthesized by anodized oxidation method and were covered with a hydroxyapatite-silver nanoparticles using photodeposition and dip coating for loading silver nanoparticles and coated hydroxyapatite (HA). The morphological texture of TiO2 nanotube and Ag-HA nanoparticles on TiO2 nanotubes surface were studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDAX analysis) and X-ray diffraction (XRD). The MCF-7 cell lines were treated with concentrations 1, 10 and 100 µg/ml of TiO2 nanotubes and HA/Ag/TiO2 nanotube for 24 and 48h. Finally, the cell viability and IC50% were evaluated using MTT assay. The results show that the HA/Ag/TiO2 has more positive effect on enhancing the cell death compare to TiO2 nanotubes and also exerts a time and concentration-dependent inhibition effect on viability of MCF-7 cells

Keywords


  1. Damodaran V.B., Bhatnagar D., Leszczak V., Popat K.C., 2015. Titania nanostructures: a biomedical perspective. RSC Adv. 5, 37149-37171.
  2. Yan J., Zhou F., 2011. TiO2 nanotubes: Structure optimization for solar cells. J Mater Chem. 21, 9406-9418.
  3. Wang X., Li Z., Xu W., Kulkarni S., Batabyal S., Zhang S. Cao A., Lydia Helena Wong L., 2015. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy. 11(1), 728ââ‚‌“735.
  4. Zhang F., Liu Z., Lu W., Lyu C., Lyu C., Wang X., 2015. The Synthesis and Photocatalytic Properties of TiO2 Nanotube Array by Starch-Modified Anodic Oxidation. Photochem Photobiol. doi: 10.1111/php. 12471.
  5. Karthik S., Gopal K., Haripriya E., Sorachon Y., Maggie P., Oomman K., Craig A., 2007. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnol. 18(065707), 1-11.
  6. Jiwon L., Dai Hong K., Seong-Hyeon H., Jae Young J., 2011. A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sensors and Actuators B: Chemical. 160(1), 1494ââ‚‌“1498.
  7. Sunghoon P., Soohyun K., Suyoung P., Wan In L., Chongmu L., 2014. Effects of Functionalization of TiO2 Nanotube Array Sensors with Pd Nanoparticles on their Selectivity. Sensors. 14, 15849-15860.
  8. Cipriano A.F., Miller C., Liu H., 2014. Anodic growth and biomedical applications of TiO2 nanotubes. J Biomed Nanotechnol. 10(10), 2977-3003.
  9. Kulkarni M., Mazare A., Gongadze E., Perutkova S., Kralj-Iglič V., Milošev I., Schmuki P., Iglič A., Mozetič M., 2015. Titanium nanostructures for biomedical applications. Nanotechnol. 26(062002), 1-18.
  10. Park J., Bauer S., Von der Mark K., Schmuki P., 2007. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 7(6), 1686-91.
  11. Moisés A.F., Edgar M., Crystel A.S., Ricardo A.G., Pablo Z., Paloma C., Juan M., Diana F., M., Reyes S., T., Cristina R., 2011. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res. 29(148), 1-7.
  12. Jedd M.H., Arti S., Sherrill A.L., Maximilian B.M., Naomi K.F., Brooke T.M., 2010. Assessing nanotoxicity in cells in vitro. Nanomed Nanobiotechnol. 2(3), 219ââ‚‌“231.
  13. Grimes C.A., Mor G.K., TiO2 nanotube Arrays synthesis, properties, and Applications, Springer: New York, 2009.
  14. Machida M., Norimoto K., Kimura T., 2005. Antibacterial activity of photo catalytic Titanium Dioxide thin films with photodeposited silver on the surface of sanitary ware. J Am Ceram Soc. 88(1), 95-100.
  15. Qiang W., Jin Zh., Lijun Zh., Shimin L., Yanqin L., 2013. Hydroxy apatite coatings for Biomedical Applications, Zhang, S., Ed., Taylor& Francis Group, CRC Press. Pp. 363-430.
  16. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods.65,55ââ‚‌“63.
  17. Ohno M., Abe T. 1991. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Methods. 15;145(1-2),199-203.
  18. Bailey M.J., Coe S., Grant D.M., Grime G.W., Jeynes C., 2009. Accurate determination of the Ca: P ratio in rough hydroxyapatite samples by SEM-EDS, PiXE and RBS-a comparative study. X-ray Spect. 38, 343-347.
  19. Elahifard M.R., Rahimnejad S., Haghighi S., Gholami M.R. 2007, Apatite-Coated Ag/AgBr/TiO2 Visible-LightPhotocatalyst for Destruction of Bacteria. J Am Chem Soc. 129(31), 9552-9553.
  20. Smirnova N.P., Manuilov E.V., Korduba O.M., Gnatyuk Yu.I., Kandyba V.O., Eremenko A.M., Gorbyk P.P., Shpak A.P., 2009. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and application, Anatoliy, P.S., Gorbyk , Eds., Springer, NY. pp. 131-145.