Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water


Department of Chemistry, College of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran


A sensitive and simple method based on the fluorescence quenching CdS quantum dots (QDs) was reported for the determination of copper(Cu2+) and nickel (Ni2+) in water samples. Water-soluble and biocompatible thioglycolic acid- capped CdSQDs was synthesized by one step process, then characterized by fluorescence, absorption spectroscopy and transmission electron microscopy (TEM). The fluorescence intensity of synthesized QDsremarkably decreased in the presence of Cu2+ and Ni2+ ions. The emission of CdSQDs had a linear decreasing relationship with Cu2+ and Ni2+ concentration in the range of 0.6 to 200 and 1 to 250 ng mL-1 with detection limits of 0.15 and 0.4 ng mL-1, respectively. Other potentially interfering ions such as iron, sodium, potassium, calcium, and magnesium ions did not affect the luminescence. The method showed good sensitivity and was satisfactorily applied to the determination of Cu2+ and Ni2+ contamination in real water samples, obtained from Nahand dam, Karkaj and Azarshahr well, tab and mineral waters.   


  1. Nardi E.P., Evangelista F.S., Tormen L., Saint Pierre T.D., Curtius A.J., d Souza S.S., Barbosa Jr. F., 2009. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 112, 727-732.
  2. Kumar A.P., Reddy P.R., Reddy V.K., 2007. Spectrophotometric determination of nickel (II) with 2-hydroxy-3-methoxy-benzaldehyde thiosemicarbazone. Indian J Chem. 46A, 1625-1629.
  3. Kenduzler E., Turker A.R., 2003. Atomic absorption spectrophotometric determination of trace copper in waters, aluminium foil and tea samples after preconcentration with 1-nitroso-2-naphthol-3,6-disulfonic acid on Ambersorb. Anal Chim Acta. 480, 259-266.
  4. Horstkotte B., Alexovič M., Maya F., Duarte C.M., Andruch V., Cerda V., 2012. Automatic determination of copper by in-syringe dispersive liquidââ‚‌“liquid microextraction of its bathocuproinecomplex using long path-length spectrophotometric detection. Talanta. 99, 349-356.
  5. Liang P., Yang J., 2010. Cloud point extraction preconcentration and spectrophotometric determination of copper in food and water samples using amino acid as the complexing agent. J Food Compos Anal. 23, 95-99.
  6. Wen X., Ye L., Deng Q., Peng L., 2011. Investigation of analytical performance for rapidly synergistic cloud point extraction of trace amounts of copper combined with spectrophotometric determination. Spectrochim Acta A. 83, 259-264.
  7. Rekha D., Kumar J.D., Jayaraj B., Lingappa Y., Chiranjeevi P., 2007. Nickel(II) Determination by Spectrophotometry Coupled with Preconcentration Technique in Water and Alloy Samples. Bull Korean Chem Soc. 28, 373-378.
  8. Matos Reyes M.N., Campos R.C., 2006. Determination of copper and nickel in vegetable oils by direct sampling graphite furnace atomic absorption spectrometry. Talanta. 70, 929-932.
  9. Tobiasz A., Walas S., Landowska L., Konefał-Goral J., 2012. Improvement of copper FAAS determination conditions via preconcentration procedure with the use of salicylaldoxime complex trapped in polymer matrix. Talanta. 96, 82-88.
  10. Tobiasz A., Walas S., Soto Hernandez A., Mrowiec H., 2012. Application of multiwall carbon nanotubes impregnated with 5-dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry. Talanta. 96, 89-95.
  11. Şahin Ç.A., Efeçınar M., Şatıroğlu N., 2010. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples. J Hazard Material. 176, 672-677.
  12. Galbeiro R., Garcia S., Gaubeur I., 2014. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry. J Trace Element Med and Biol. 28, 160-165.
  13. Sun Z., Liang P., Ding Q., Cao J., 2006. Determination of trace nickel in water samples by cloud point extraction preconcentration coupled with graphite furnace atomic absorption spectrometry. J Hazard Material. 137, 943-946.
  14. Zeeb M., Ganjali M.R., Norouzi P., Kalaee M.R., 2011. Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry. Food Chem Toxicol. 49, 1086-1091.
  15. Ghosh K., Mohan V., Kumar P., Ng S.W., Tiekink E.R.T., 2014. Selective fluorescence sensing of Ni2+ by tetradentate ligands: Synthesis of nickel complexes and crystal structures. Inorganica Chimica Acta. 416, 76-84.
  16. Zhang Y.h., Zhang H.s., Guo X.F., Wang H., 2008. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination. Microchem J. 89, 142-147.
  17. Sorouraddin M.H., Iranifam M., Imani-Nabiyyi A., 2009. A Novel Captopril Chemiluminescence System for Determination of Copper(II) in Human Hair and Cereal Flours. J Fluoresc. 19, 575-581.
  18. Li L.N., Li N.B., Luo H.Q., 2006. A new chemiluminescence method for the determination of nickel ion, Spectrochim. Acta. Part A. 64, 391-396.
  19. Shoaee H., Roshdi M., Khanlarzadeh N., Beiraghi A., 2012. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim Acta A. 98, 70-75.
  20. Beiraghi A., Babaee S., Roshdi M., 2012. Simultaneous preconcentration of cadmium, cobalt and nickel in water samples by cationic micellar precipitation and their determination by inductively coupled plasma-optical emission spectrometry. Microchem J. 100, 66-71.
  21. Pournaghi-AzarM.H., Dastangoo H., 2000. Differential pulse anodic stripping voltammetry of copper in dichloromethane: application to the analysis of human hair. Anal Chim Acta. 405, 135-144.
  22. Johansson M., Snell J., Frech W., Hansson R., 1998. Determination of nickel using electrochemical reduction and carbonyl generation with in situ trapping electrothermal atomic absorption spectrometry. Analyst. 123, 1223-1228.
  23. Alivisatos, P., 2004.The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47-52.
  24. Chen Y., Rosenzweig Z., 2002. Luminescent CdS quantum dots as selective ion probes. Anal Chem. 74, 5132-5138.
  25. Xia Y.S., Zhu C.Q., 2008. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II).Talanta. 75, 215ââ‚‌“221.
  26. Li H., Zhang Y., Wang X., Gao Z., 2008. A luminescent nanosensor for Hg (II) based on functionalisedCdSe/ZnS quantum dots. Microchim Acta. 160, 119ââ‚‌“123.
  27. Koneswaran M., Narayanaswamy R., 2009. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sens Actuators. B 139, 91-96.
  28. Gattas-Asfura K.M., Leblanc R.M., 2003. Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I). Chem Commun. 2684ââ‚‌“2685.
  29. Fernandez-Arguelles M.T., Jin W.J., Costa-Fernandez J.M., Pereiro R., Sanz-Medel A., 2005. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal Chim Acta. 549, 20ââ‚‌“25.
  30. Xie H.Y., Liang J.G., 2004. Luminescent CdSe- ZnS quantum dots as selective Cu2+ probe, Spectrochim. Acta A. 60, 2527ââ‚‌“2530.
  31. Koneswaran M., Narayanaswamy R., 2009. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens Actuators B. 139, 104ââ‚‌“109.
  32. Chen J.L., Zhu C.Q., 2005. Functionalised cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal Chim Acta. 546, 147ââ‚‌“153.
  33. Wu H., Liang J., Han H., 2008. A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta. 161, 81ââ‚‌“86.
  34. Cai Z., Shi B., Zhao L., Ma M., 2012. Ultrasensitive and rapid lead sensing in water based on environmental friendly and high luminescent L-glutathione-capped-ZnSe quantum dots. Spectrochim Acta A. 97, 909-914.
  35. Wang G.L., Dong Y.M., Yang H.X., Li ZJ., 2011.Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots. Talanta. 83, 943-947.