Effect on Germination and Early Growth Characteristics in Wheat Plants (Triticumaestivum L.) Seeds Exposed to TiO2 Nanoparticles



The present study was aimed to investigate the effects of titanium dioxide nanoparticles (nano-TiO2) on wheat (Triticumaestivum L.) plants cv. Parsi. The experimental treatments included seven concentrations of nano- TiO2 (10, 100, 1000, 1200, 1500 and 1700 ppm nano-TiO2 and control (without any TiO2). The results showed that among the wheat germination indices, germination rate and weighted germination index were affected by TiO2 nanoparticles treatments. The lowest and the highest germination rate (16.7 vs. 11.1n.day-1) were obtained in control and 1000 and 1200 ppm concentration of nano- TiO2  treatments, respectively. These values for weighted germination index were (2.4 vs. 2.08) in 2000 ppm and control treatments respectively.  In addition, plumule and radicle length, seedling fresh weight and seedling vigor index were affected by nano- TiO2 concentrations, significantly. Plumule and radicle lengths at 1200 ppm concentration of nano-TiO2 were higher than untreated control. This study shows that using of TiO2nanoparticles in suitable concentration caused increasing of seed germination of wheat cv. Parsiin comparison to control plants, otherwise low concentrations had inhibitory effects on wheat germination characteristics.


  1. Brunner T.I., Wick P., Manser P., Spohn P., Grass R.N., Limbach L.K., Bruinink A., Stark W.J., 2006. In vitro Cytotoxicity of Oxide nanoparticles: Comparison to asbestos, Silica, and Effect of particle Solubility.Environmental Science & Technology. 40, 4374-4381.
  2. Nasibulin A.G., Petri Ahonen P., Richard O., Kauppinen E. L., 2001. Copper and Copper Oxide nanoparticle Formation by Chemical Vapor Nucleation from Copper (ΙΙ) Acetylacetoneate. Journal of Aerosol Science. 31, 552-553.
  3. Salata O.V., 2004. Applications of Nanoparticles in Biology and Medicine.Journal of Nanobiochnology.2, 3.
  4. Lin D., Xing B., 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution. 150, 243-250.
  5. Nel A., Xia T., Madler L., Li N., 2006. Toxic Potential of Materials at the nanolevel. Science. 311, 622-627.
  6. Yang J.G., Okamoto T., Lchino R., Sarake S., Okido M., 2006. A simple way for preparing antioxidationnano-Copper powders. Chemistry Letters. 35, 648-649.
  7. Behra R., Krug H., 2008. Nanoecotoxicology-Nanoparticles at large.Nature Nanotechnology. 3, 253-254.
  8. Du W., Sun Y., Ji R., Zhu J., Wu J., Guo H., 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring.13, 822-828.
  9. Lin D. H., Xing B. S., 2007.Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollution. 150, 243ââ‚‌“250.
  10. Larue C., Veronese G., Flank A.M., Surble S., 2012. Comparative uptake and impact of TiO2 nanoparticles in Wheat and rapeseed. Journal of Toxicology and Environmental Health, Part A. 75(13-15), 722-734.
  11. Singh D., Kumar S., Singh S.C., Lal B., Singh N.B., 2012. Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica Oleracea var. Capitata. Science of Advanced Materials. 4(3-4), 522-531.
  12. Yang L., Watts D. J., 2005. Particles surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters. 158, 122-132.
  13. Lee C.W., Mahindra S., Zodrow K., Li D., Tsai Y.C., Braam J., 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry. 29, 669-675.
  14. Figueroa J.A., Armesto J.J., 2001. Community-wide germination strategies in a temprate rainforest of southern chile: ecological and evolutionary correlates, Australian Journal of Botany. 49, 411 ââ‚‌“ 425.
  15. Bu H.Y., Chen X.L., Wang Y.F., 2007a. Germination time, other plant traits and phylogeny in an alpine meadow on the eastern Qinghai-Tibet plateau. Community Ecology. 8, 221 ââ‚‌“ 227.
  16. Bu H.Y., Chen X.L., Xu X.L., Liu K., 2007b. Seed mass and germination in an alpine meadow on the eastern Tsinghai ââ‚‌“ Tibet plateau, plant Ecology. 191, 127 ââ‚‌“ 149.
  17. Bu H.Y., Chen X.L., Xu X.L., Liu K., 2008. Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecology. 195, 87-98.
  18. Bu H.Y., Du G.Z., Chen X.L., Wang Y.F., 2009. The evolutionary significance of seed germinability in an alpine meadow on eastern Qinghai ââ‚‌“ Tibet plateau.Arctic, Antarctic, and Alpine Research. 41, 97 ââ‚‌“ 102.
  19. Wu G.L., Du G.Z., 2007. Germination is related to seed mass in grasses (poaceae) of the eastern Qinghai ââ‚‌“ Tibetan plateau, china. Nordic Journal of Botany. 25, 361 ââ‚‌“ 365.
  20. Hruby M., Cigler P., Kuzel S., 2002. Contribution to understanding the mechanism of titanium action in plant.Journal Plant Nutr. 25, 577ââ‚‌“598.
  21. Ruffini C.M., Cremonini R. 2009., Nanoparticles and higher plants. Caryologia.62, 161-5.
  22. Dong H., 2009. Effects of nano-TiO2 on seed germination capacity of Tibetan Capillary. Journal of Anhui Agricultural Sciences. 22.
  23. Wierzbicka M., Obidzinska J., 1998. The effect of lead on seed imbibition and germination in different plant species.Plant Science. 137, 155-171.
  24. Sresty T.V.S., Rao K.V.M., 1999. Ultrastructural alteration in response to zinc and nickel stress in the root cells of pigeonpea. Environmental and Experimental Botany. 41, 3-13.
  25. Lee W.M., An Y.J., Yoon H., Kweon H.S., 2008.
  26. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolusradiatus) and wheat (Triticumaestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry. 27, 1915-1921.
  27. Foltête A.S., Masfaraud J.F. S., 2011. Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. EnvirPollut. 159(10), 2515-22.
  28. Zhang L., Hong F., Lu S., Liu C., 2005. Effect of nano TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research.105, 83ââ‚‌“91.
  29. Li F.M., Zhao W., Li Y.Y., Tian Z.J., Wang Z.Y., 2012. Toxic effects of nano-TiO2 on Gymnodiniumbreve.Huan Jing KeXue. 33(1), 233-8.
  30. Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J. R., Gardea-Torresdey J.L., 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain.Journal of Agricultural and Food Chemistry. 59(8), 3485ââ‚‌“3498.