Silvernano Particle Loaded on Activated Carbon as Novel Adsorbent for the Removal of Acid Yellow 199 Dye


1 Graduate student, Department of Chemistry, Firozabad Branch, Islamic Azad University, Firozabad, Iran

2 Department of Chemistry, Mashhad Branch, PN University, Khorasan, Iran

3 Department of Chemistry, Firozabad Branch, Islamic Azad University, Firozabad, Iran


In this study, a new adsorbent, silver nanoparticle loaded on activated carbon (Ag˗NP˗AC) was usedfor removal of acid yellow199 (AY 199) dye. This novel material was characterized and identified by differenttechniques such as Brunauer, Emmett and Teller (BET), field emission scanning electron microscopy(FESEM), X-ray diffraction (XRD) analysis. Unique properties of this adsorbent such as high surface area(>1100 m2g-1) and low pore size (<47 A˚) and average particle size lower than 60 A˚ make it possible forefficient removal of Ay199. In batch experimental set-up, adsorbent dosage, initial dye concentration, contacttime and pH were investigated. Optimum values were set as pH of 3.0, 0.03g/50mL of adsorbent for initial dyeconcentration of 15 mgL-1 at 40 min and 25 ±1 ºC. The adsorption of Ay199 follows the pseudo-second-orderrate equation in addition to interparticle diffusion model (with removal more than 90%) at all conditions.Equilibrium data fitted well with the Langmuir model, while maximum adsorption capacity was 30 mg g-1 for0.03 g/50mL of Ag˗NP˗AC. Calculation of various thermodynamic parameters such as, Gibb’s free energy,entropy and enthalpy of the on-going adsorption process also indicated feasibility and endothermic nature ofAY 199 adsorption onto Ag˗NP˗AC.


  1. Heydari M., Fazaeli R., Yousefi M., 2012.
  2. Preparation of PerovskiteNanocomposites
  3. andPhotochemical Degradation Kinetics of Acid
  4. Yellow 199, J.Appl.ChemRes, 6:7-15.
  5. Wijetunga S., Xiufen L., Wenquan R., Chen J.,
  6. Removal Mechanisms of Acid Dyes of
  7. DifferentChemical Groups under Anaerobic
  8. Mixed Culture, Ruhana J. Scie, 2: 96-110.
  9. Blackburn R. S., 2004. Natural polysaccharides
  10. and their interactions with dye molecules:
  11. applications in effluent treatment. Environ. Sci.
  12. Technol. 38: 4905ââ‚‌“ 4909.
  13. Crini G.,Peindy H. N.,Gimbert F., 2007.
  14. Removal of C.I. Basic Green 4 (Malachite Green)
  15. from aqueous solutions by adsorption using
  16. cyclodextrin- based adsorbent: Kinetic and
  17. equilibrium studies. Sep. Pur. Technol, 53: 97ââ‚‌“
  18. Sun Q., Yang L., 2003.The adsorption of basic
  19. dyes from aqueous solution on modeled peatresinparticle.
  20. Water Res. 37:1535-1544.
  21. Yee H., Chin S. M., 2005. Decolorization
  22. effects of six azo dyes by O3, UV/O3 and
  23. UV/H2O2processes. Dyes Pigm. 65: 25-31.
  24. Chatterjee S., Chatterjee S.,Chatterjee B. P.,
  25. Guha A. K., 2007. Adsorptive removal of congo
  26. red, a carcinogenic textile dye by chitosan
  27. hydrobeads: Binding mechanism, equilibrium and
  28. kinetics. Colloids & Surfaces A: Physicochem.
  29. Eng. Aspects. 299:146ââ‚‌“152.
  30. Mondal S., 2008. Methods of dye removal from
  31. dye house effluent-an overview. Environ. Engg.
  32. Sci. 25:383ââ‚‌“396.
  33. Zonoozi M. H., MoghaddamM. R. A., Arami
  34. M., 2009. Coagulation/flocculation of dye
  35. containing solutions using polyaluminium chloride
  36. and alum. Water Sci. Technol. 59:1343ââ‚‌“1351.
  37. Sachdeva S., Kumar A., 2009. Preparation of
  38. nanoporous composite carbon membrane for
  39. separation of Rhodamine B dye. J. Membr. Sci.
  40. : 2ââ‚‌“10.
  41. Tan I., Ahmad A. L., Hameed B. H., 2008.
  42. Adsorption of basic dye on high-surface area
  43. activated carbon prepared from coconut husk:
  44. equilibrium, kinetic and thermodynamic studies. J.
  45. Hazard. Mater. 154:337ââ‚‌“346.
  46. Gupta V. K., Jain R., Varshney S., 2007.
  47. Electrochemical removal of hazardous dye
  48. Reactofix Red 3 BFN from industrial effluents. J.
  49. Colloid Interface Sci. 312: 292ââ‚‌“296.
  50. Gupta V. K., 2007. Photochemical degradation
  51. of hazardous dyeââ‚‌”safaranin-T using TiO2
  52. catalyst. J. Colloid Interface Sci. 309: 460ââ‚‌“465.
  53. Kavitha D., Namasivayam C., 2007.
  54. Experimental and kinetic studies on methylene
  55. blue adsorption by coir pith carbon. Bioresour.
  56. Technol. 98:14ââ‚‌“21.
  57. Hua Z., Chena H., Ji F., Yuana S., 2010.
  58. Removal of Congo Red from aqueous solution by
  59. cattail root. J. Hazard Mater. 173:292ââ‚‌“297.
  60. Cheung W. H., Szeto Y. S., McKay G., 2009.
  61. Enhancing the adsorption capacities of acid dyes
  62. by chitosan nano particles.Bioresour. Technol.
  63. :1143ââ‚‌“1148.
  64. Mosallanejad N., Arami A., 2012. Kinetics and
  65. isotherm of sunset yellow dye adsorption on
  66. cadmium sulfide nanoparticle loaded on activated
  67. carbon, J Chem Health Risks 2(1): 31-40.
  68. Huang H., Yang X., 2004. Synthesis of
  69. polysaccharide-stabilized gold and silver
  70. nanoparticles: A green method. Carbohyd. Res.
  71. , 2627-2631
  72. Huang H., Yang X., 2004. Synthesis of
  73. polysaccharide-stabilized gold and silver
  74. nanoparticles: a green method. Carbohydr. Res.
  75. : 2627-31.
  76. Wang X., Chen Y., 2008. A new two-phase
  77. system for the preparation of nearly mono disperse
  78. silver nanoparticles,Mater. Lett.62: 4366ââ‚‌“8.
  79. Goudarzi A., MotedayenAval G., Park S. S.,
  80. Choi M.C., Sahraei R., 2009. Antisolvent-induced
  81. encapsulation for extraction/preconcentration of
  82. silver nanoparticles,Chem. Mater. 21: 2375-85.
  83. Slejko F. L., 1985. Adsorption Technology: A
  84. Step by step approach to process evaluation
  85. application. Marcel Dekker, NY.
  86. SuffetI H., McGurie M. J., 1985. Activated
  87. carbon adsorption of organics from aqueous
  88. phase.Ann.Arbor. Sci. Michigan. 1ââ‚‌“2.
  89. Mittal A., Kurup L., Mittal J., 2007.
  90. Freundlich andLangmuir adsorption isotherms and
  91. kinetics for the removal of Tartrazine from
  92. aqueous solutions using hen feathers. J. Hazard
  93. Mater. 146:243ââ‚‌“248.
  94. Langmuir I., 1916. The constitution and
  95. fundamental properties of solids and liquids. J.
  96. Am. Chem. Soc. 38:2221ââ‚‌“2295.
  97. Crini G., 2006. Non-conventional low-cost
  98. adsorbents for dye removal, a review.Bioresour.
  99. Technol. 97:1061ââ‚‌“1085.
  100. Temkin M. J., Pyzhev V., 1940. Recent
  101. modification to Langmiur
  102. isotherms.ActaPhysiochim. USSR. 12: 217ââ‚‌“222.
  103. Rengaraj S., KimY., Joo C. K., Yi J., 2004.
  104. Removal of copper from aqueous solution by
  105. aminated and protonated mesoporousaluminas:
  106. kinetics and equilibrium. J. Colloid Interf. Sci.
  107. :14-21.
  108. Sari A., Tuzen M., 2008. Biosorption of
  109. cadmium (II) from aqueous solution by red algae
  110. (Ceramiumvirgatum): Equilibrium, kinetic and
  111. thermodynamic studies. J. Hazard.Mater. 157:448-