Ultra-Trace Determination of Copper and Silver in Environmental Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry

Authors

1 Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

A sensitive, selective and effective ionic liquid-based single drop microextraction technique wasdeveloped by using ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate, C6MIMPF6, coupledwith electrothermal atomic absorption spectrometry (ETAAS) for the determination of copper and silver inenvironmental samples. Dithizone was used as chelating agent. Several factors that influence themicroextraction efficiency and ETAAS signal, such as pH, dithizone concentration, extraction time, amounts ofionic liquid, stirring rate, pyrolysis and atomization temperature were investigated and the microextractionconditions were established. In the optimum experimental conditions, the detection limits (3 s) of the methodwere 4 and 8 ng L-1 and corresponding relative standard deviations (0.1 μg L-1, n = 6) were 4.2% and 4.8% forAg and Cu, respectively. The developed method was validated by analysis of a certified reference material andapplied to the determination of silver and copper.

Keywords


Greenwood N.N. , Earnshaw A., 1997.
Chemistry of the Elements Elsevier London.
Resano M., Aramendía M., García-Ruiz E.,
Crespo C. , Belarra M. A., 2006. Solid samplinggraphite
furnace atomic absorption spectrometry
for the direct determination of silver at trace and
ultratrace levels. Analytica Chimica Acta 571:
-149.
Baron M. G., Herrin R. T., Armstrong D. E.,
The measurement of silver in road salt by
electrothermal atomic absorption spectrometry.
Analyst 125: 123-126
Bento Borba da Silva J., Andreia Mesquita da
Silva M., Jose Curtius A., Welz B., 1999.
Determination of Ag, Pb and Sn in aqua regia
extracts from sediments by electrothermal atomic
absorption spectrometry using Ru as a permanent
modifier. Journal of Analytical Atomic
Spectrometry 14: 1737-1742.
Bermejo-barrera P., Moreda-pineiro J., Moredapineiro
A., Bermejo-barrera A., 1998. Usefulness
of the chemical modification and the multiinjection
technique approaches in the
electrothermal atomic absorption spectrometric
determination of silver, arsenic, cadmium,
chromium, mercury, nickel and lead in sea-water.
J. Anal. At. Spectrom. 13: 777-786.
El-Shahawi M. S., Bashammakh A. S., Bahaffi
S. O., 2007. Chemical speciation and recovery of
gold(I, III) from wastewater and silver by liquidââ‚‌“
liquid extraction with the ion-pair reagent
amiloride mono hydrochloride and AAS
determination. Talanta 72: 1494-1499.
GHiasvand A. R., Moradi F., SHarghi H.,
Hasaninejad A. R., 2005. Determination of
Silver(I) by Electrothermal-AAS in a Microdroplet
Formed from a Homogeneous Liquid-Liquid
Extraction System Using
Tetraspirocyclohexylcalix4pyrroles. Analytical
Sciences 24: 387-.
Abe S., Fujii K., Sono T., 1994. Liquid-liquid
extraction of manganese(II), copper(II) and
zinc(II) with acyclic and macrocyclic Schiff bases
containing bisphenol A subunits. Anal. Chim. Acta
: 325-330.
Dadfarnia S., Haji Shabani A. M., Gohari M.,
Trace enrichment and determination of
silver by immobilized DDTC microcolumn and
flow injection atomic absorption spectrometry.
Talanta 64: 682-687.
Tuzen M., Soylak M., 2009. Column solidphase
extraction of nickel and silver in
environmental samples prior to their flame atomic
absorption spectrometric determinations. Journal
of Hazardous Materials 164: 1428-1432.
Tunçeli A., Türker A. R., 2000. Flame atomic
absorption spectrometric determination of silver
after preconcentration on Amberlite XAD-16 resin
from thiocyanate solution. Talanta 51: 889-894.
Christou C. K., Anthemidis A. N., 2009. Flow
injection on-line displacement/solid phase
extraction system coupled with flame atomic
absorption spectrometry for selective trace silver
determination in water samples. Talanta 78: 144-
Soylak M. , Cay R. S., 2007.
Separation/preconcentration of silver(I) and
lead(II) in environmental samples on cellulose
nitrate membrane filter prior to their flame atomic
absorption spectrometric determinations. Journal
of Hazardous Materials 146: 142-147.
Shamspur T., Mashhadizadeh M. H.,
Sheikhshoaie I., 2003. Flame atomic absorption
spectrometric determination of silver ion after
preconcentration on octadecyl silica membrane
disk modified with bis5-((4-
nitrophenyl)azosalicylaldehyde) as a new Schiff
base ligand. Journal of Analytical Atomic
Spectrometry 18: 1407-1410.
Katarina R. K., Takayanagi T., Oshima M. ,
Motomizu S., 2006. Synthesis of a chitosan-based
chelating resin and its application to the selective
concentration and ultratrace determination of
silver in environmental water samples. Analytica
Chimica Acta 558: 246-253.
Pu Q., Sun Q., 1998. Application of 2-
mercaptobenzothiazole-modified silica gel to online
preconcentration and separation of silver for
its atomic absorption spectrometric determination
Analyst 123: 239-243.
Chakrapani G., Mahanta P. L., Murty D. S. R.,
Gomathy B., 2001. Preconcentration of traces of
gold, silver and palladium on activated carbon and
its determination in geological samples by flame
AAS after wet ashing. Talanta 53: 1139-1147.
Faraji M., Yamini Y., Shariati S., 2009.
Application of cotton as a solid phase extraction
sorbent for on-line preconcentration of copper in
water samples prior to inductively coupled plasma
optical emission spectrometry determination.
Journal of Hazardous Materials 166: 1383-1388.
Mashhadizadeh M. H., Pesteh M., Talakesh
M., Sheikhshoaie I., Ardakani M. M., Karimi M.
A., 2008. Solid phase extraction of copper (II) by
sorption on octadecyl silica membrane disk
modified with a new Schiff base and determination
with atomic absorption spectrometry.
Spectrochimica Acta Part B: Atomic Spectroscopy
: 885-888.
Xiang G., Zhang Y., Jiang X., He L., Fan L.,
Zhao W., 2010. Determination of trace copper in
food samples by flame atomic absorption
spectrometry after solid phase extraction on
modified soybean hull. Journal of Hazardous
Materials 179: 521-525.
Tokalıoğlu Ş., Gürbüz F., 2010. Selective
determination of copper and iron in various food
samples by the solid phase extraction. Food
Chemistry 123: 183-187.
Chen X. W., Huang L. L. , He R. H., 2009.
Silk fibroin as a sorbent for on-line extraction and
preconcentration of copper with detection by
electrothermal atomic absorption spectrometry.
Talanta 78: 71-75.
Sant'Ana O. D., Wagener A. L. R., Santelli R.
E., Cassella R. J., Gallego M., Valcárcel M., 2002.
Precipitationââ‚‌“dissolution system for silver
preconcentration and determination by flow
injection flame atomic absorption spectrometry.
Talanta 56: 673-680.
Jiang S., Fu F., Qu J., Xiong Y., 2008. A
simple method for removing chelated copper from
wastewaters: Ca(OH)2-based replacementprecipitation.
Chemosphere 73: 785-790.
Jeannot M. A., Cantwell F. F., 1996. Solvent
Microextraction into a Single Drop. Analytical
Chemistry 68: 2236-2240.
Dadfarnia S., Haji Shabani A. M., 2010. Recent
development in liquid phase microextraction for
determination of trace level concentration of
metalsââ‚‌”A review. Analytica Chimica Acta 658:
-119.
Pena-Pereira F., Lavilla I., Bendicho C., 2009.
Miniaturized preconcentration methods based on
liquidââ‚‌“liquid extraction and their application in
inorganic ultratrace analysis and speciation: A
review. Spectrochimica Acta Part B: Atomic
Spectroscopy 64: 1-15.
Xu L., Basheer C., Lee H. K., 2007.
Developments in single-drop microextraction.
Journal of Chromatography A 1152: 184-192.
Psillakis E., Kalogerakis N., 2002.
Developments in single-drop microextraction.
TrAC Trends in Analytical Chemistry 21: 54-64.
Chamsaz M., Arbab-Zavar M. H., Nazari S.,
Determination of arsenic by electrothermal
atomic absorption spectrometry using headspace
liquid phase microextraction after in situ hydride
generation. Journal of Analytical Atomic
Spectrometry 18: 1279-1282.
Xia L., Hu B., Jiang Z., Wu Y., Liang Y.,
Single-Drop Microextraction Combined
with Low-Temperature Electrothermal
Vaporization ICPMS for the Determination of
Trace Be, Co, Pd, and Cd in Biological Samples.
Analytical Chemistry 76: 2910-2915.
Liang P., Liu R., Cao J., 2008. Single drop
microextraction combined with graphite furnace
atomic absorption spectrometry for determination
of lead in biological samples. Microchimica Acta
: 135-139.
Fan Z., 2007. Determination of antimony(III)
and total antimony by single-drop microextraction
combined with electrothermal atomic absorption
spectrometry. Analytica Chimica Acta 585: 300-
Fan Z., Zhou W., 2006. Dithizoneââ‚‌“chloroform
single drop microextraction system combined with
electrothermal atomic absorption spectrometry
using Ir as permanent modifier for the
determination of Cd in water and biological
samples. Spectrochimica Acta Part B: Atomic
Spectroscopy 61: 870-874.
Maltez H. F., Borges D. L. G., Carasek E.,
Welz B., Curtius A. J., 2008. Single drop microextraction
with O,O-diethyl dithiophosphate for
the determination of lead by electrothermal atomic
absorption spectrometry. Talanta 74: 800-805.
Li L., Hu B., Xia L., Jiang Z., 2006.
Determination of trace Cd and Pb in
environmental and biological samples by ETVICP-
MS after single-drop microextraction. Talanta
: 468-473.
Swatloski R. P., Holbrey J. D., Rogers R. D.,
Ionic liquids are not always green:
hydrolysis of 1-butyl-3-methylimidazolium
hexafluorophosphate. Green Chemistry 5: 361-
Pandey S., 2006. Analytical applications of
room-temperature ionic liquids: A review of recent
efforts. Analytica Chimica Acta 556: 38-45.
Wei G. T., Yang Z., Chen C. J., 2003. Room
temperature ionic liquid as a novel medium for
liquid/liquid extraction of metal ions. Analytica
Chimica Acta 488: 183-192.
Hirayama N., Deguchi M., Kawasumi H.,
Honjo T., 2005. Use of 1-alkyl-3-
methylimidazolium hexafluorophosphate room
temperature ionic liquids as chelate extraction
solvent with 4,4,4-trifluoro-1-(2-thienyl)-1,3-
butanedione. Talanta 65: 255-260.
Haixia S., Zaijun L., Ming L., 2007. Ionic
liquid 1-octyl-3-methylimidazolium
hexafluorophosphate as a solvent for extraction of
lead in environmental water samples with
detection by graphite furnace atomic absorption
spectrometry. Microchimica Acta 159: 95-100.
Manzoori J. L., Amjadi M., Abulhassani J.,
Ionic liquid-based single drop
microextraction combined with electrothermal
atomic absorption spectrometry for the
determination of manganese in water samples.
Talanta 77: 1539-1544.
Manzoori J. L., Amjadi M., Abulhassani J.,
Ultra-trace determination of lead in water
and food samples by using ionic liquid-based
single drop microextraction-electrothermal atomic
absorption spectrometry. Analytica Chimica Acta
: 48-52.
Ye C., Zhou Q., Wang X., 2007. Improved
single-drop microextraction for high sensitive
analysis. Journal of Chromatography A 1139: 7-
Jeannot M. A., Cantwell F. F., 1997. Mass
Transfer Characteristics of Solvent Extraction into
a Single Drop at the Tip of a Syringe Needle.
Analytical Chemistry 69: 235-239.