Ultra-Trace Determination of Copper and Silver in Environmental Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry

Authors

1 Department of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

A sensitive, selective and effective ionic liquid-based single drop microextraction technique wasdeveloped by using ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate, C6MIMPF6, coupledwith electrothermal atomic absorption spectrometry (ETAAS) for the determination of copper and silver inenvironmental samples. Dithizone was used as chelating agent. Several factors that influence themicroextraction efficiency and ETAAS signal, such as pH, dithizone concentration, extraction time, amounts ofionic liquid, stirring rate, pyrolysis and atomization temperature were investigated and the microextractionconditions were established. In the optimum experimental conditions, the detection limits (3 s) of the methodwere 4 and 8 ng L-1 and corresponding relative standard deviations (0.1 μg L-1, n = 6) were 4.2% and 4.8% forAg and Cu, respectively. The developed method was validated by analysis of a certified reference material andapplied to the determination of silver and copper.

Keywords


  1. Greenwood N.N. , Earnshaw A., 1997.
  2. Chemistry of the Elements Elsevier London.
  3. Resano M., Aramendía M., García-Ruiz E.,
  4. Crespo C. , Belarra M. A., 2006. Solid samplinggraphite
  5. furnace atomic absorption spectrometry
  6. for the direct determination of silver at trace and
  7. ultratrace levels. Analytica Chimica Acta 571:
  8. -149.
  9. Baron M. G., Herrin R. T., Armstrong D. E.,
  10. The measurement of silver in road salt by
  11. electrothermal atomic absorption spectrometry.
  12. Analyst 125: 123-126
  13. Bento Borba da Silva J., Andreia Mesquita da
  14. Silva M., Jose Curtius A., Welz B., 1999.
  15. Determination of Ag, Pb and Sn in aqua regia
  16. extracts from sediments by electrothermal atomic
  17. absorption spectrometry using Ru as a permanent
  18. modifier. Journal of Analytical Atomic
  19. Spectrometry 14: 1737-1742.
  20. Bermejo-barrera P., Moreda-pineiro J., Moredapineiro
  21. A., Bermejo-barrera A., 1998. Usefulness
  22. of the chemical modification and the multiinjection
  23. technique approaches in the
  24. electrothermal atomic absorption spectrometric
  25. determination of silver, arsenic, cadmium,
  26. chromium, mercury, nickel and lead in sea-water.
  27. J. Anal. At. Spectrom. 13: 777-786.
  28. El-Shahawi M. S., Bashammakh A. S., Bahaffi
  29. S. O., 2007. Chemical speciation and recovery of
  30. gold(I, III) from wastewater and silver by liquidââ‚‌“
  31. liquid extraction with the ion-pair reagent
  32. amiloride mono hydrochloride and AAS
  33. determination. Talanta 72: 1494-1499.
  34. GHiasvand A. R., Moradi F., SHarghi H.,
  35. Hasaninejad A. R., 2005. Determination of
  36. Silver(I) by Electrothermal-AAS in a Microdroplet
  37. Formed from a Homogeneous Liquid-Liquid
  38. Extraction System Using
  39. Tetraspirocyclohexylcalix4pyrroles. Analytical
  40. Sciences 24: 387-.
  41. Abe S., Fujii K., Sono T., 1994. Liquid-liquid
  42. extraction of manganese(II), copper(II) and
  43. zinc(II) with acyclic and macrocyclic Schiff bases
  44. containing bisphenol A subunits. Anal. Chim. Acta
  45. : 325-330.
  46. Dadfarnia S., Haji Shabani A. M., Gohari M.,
  47. Trace enrichment and determination of
  48. silver by immobilized DDTC microcolumn and
  49. flow injection atomic absorption spectrometry.
  50. Talanta 64: 682-687.
  51. Tuzen M., Soylak M., 2009. Column solidphase
  52. extraction of nickel and silver in
  53. environmental samples prior to their flame atomic
  54. absorption spectrometric determinations. Journal
  55. of Hazardous Materials 164: 1428-1432.
  56. Tunçeli A., Türker A. R., 2000. Flame atomic
  57. absorption spectrometric determination of silver
  58. after preconcentration on Amberlite XAD-16 resin
  59. from thiocyanate solution. Talanta 51: 889-894.
  60. Christou C. K., Anthemidis A. N., 2009. Flow
  61. injection on-line displacement/solid phase
  62. extraction system coupled with flame atomic
  63. absorption spectrometry for selective trace silver
  64. determination in water samples. Talanta 78: 144-
  65. Soylak M. , Cay R. S., 2007.
  66. Separation/preconcentration of silver(I) and
  67. lead(II) in environmental samples on cellulose
  68. nitrate membrane filter prior to their flame atomic
  69. absorption spectrometric determinations. Journal
  70. of Hazardous Materials 146: 142-147.
  71. Shamspur T., Mashhadizadeh M. H.,
  72. Sheikhshoaie I., 2003. Flame atomic absorption
  73. spectrometric determination of silver ion after
  74. preconcentration on octadecyl silica membrane
  75. disk modified with bis5-((4-
  76. nitrophenyl)azosalicylaldehyde) as a new Schiff
  77. base ligand. Journal of Analytical Atomic
  78. Spectrometry 18: 1407-1410.
  79. Katarina R. K., Takayanagi T., Oshima M. ,
  80. Motomizu S., 2006. Synthesis of a chitosan-based
  81. chelating resin and its application to the selective
  82. concentration and ultratrace determination of
  83. silver in environmental water samples. Analytica
  84. Chimica Acta 558: 246-253.
  85. Pu Q., Sun Q., 1998. Application of 2-
  86. mercaptobenzothiazole-modified silica gel to online
  87. preconcentration and separation of silver for
  88. its atomic absorption spectrometric determination
  89. Analyst 123: 239-243.
  90. Chakrapani G., Mahanta P. L., Murty D. S. R.,
  91. Gomathy B., 2001. Preconcentration of traces of
  92. gold, silver and palladium on activated carbon and
  93. its determination in geological samples by flame
  94. AAS after wet ashing. Talanta 53: 1139-1147.
  95. Faraji M., Yamini Y., Shariati S., 2009.
  96. Application of cotton as a solid phase extraction
  97. sorbent for on-line preconcentration of copper in
  98. water samples prior to inductively coupled plasma
  99. optical emission spectrometry determination.
  100. Journal of Hazardous Materials 166: 1383-1388.
  101. Mashhadizadeh M. H., Pesteh M., Talakesh
  102. M., Sheikhshoaie I., Ardakani M. M., Karimi M.
  103. A., 2008. Solid phase extraction of copper (II) by
  104. sorption on octadecyl silica membrane disk
  105. modified with a new Schiff base and determination
  106. with atomic absorption spectrometry.
  107. Spectrochimica Acta Part B: Atomic Spectroscopy
  108. : 885-888.
  109. Xiang G., Zhang Y., Jiang X., He L., Fan L.,
  110. Zhao W., 2010. Determination of trace copper in
  111. food samples by flame atomic absorption
  112. spectrometry after solid phase extraction on
  113. modified soybean hull. Journal of Hazardous
  114. Materials 179: 521-525.
  115. Tokalıoğlu Ş., Gürbüz F., 2010. Selective
  116. determination of copper and iron in various food
  117. samples by the solid phase extraction. Food
  118. Chemistry 123: 183-187.
  119. Chen X. W., Huang L. L. , He R. H., 2009.
  120. Silk fibroin as a sorbent for on-line extraction and
  121. preconcentration of copper with detection by
  122. electrothermal atomic absorption spectrometry.
  123. Talanta 78: 71-75.
  124. Sant'Ana O. D., Wagener A. L. R., Santelli R.
  125. E., Cassella R. J., Gallego M., Valcárcel M., 2002.
  126. Precipitationââ‚‌“dissolution system for silver
  127. preconcentration and determination by flow
  128. injection flame atomic absorption spectrometry.
  129. Talanta 56: 673-680.
  130. Jiang S., Fu F., Qu J., Xiong Y., 2008. A
  131. simple method for removing chelated copper from
  132. wastewaters: Ca(OH)2-based replacementprecipitation.
  133. Chemosphere 73: 785-790.
  134. Jeannot M. A., Cantwell F. F., 1996. Solvent
  135. Microextraction into a Single Drop. Analytical
  136. Chemistry 68: 2236-2240.
  137. Dadfarnia S., Haji Shabani A. M., 2010. Recent
  138. development in liquid phase microextraction for
  139. determination of trace level concentration of
  140. metalsââ‚‌”A review. Analytica Chimica Acta 658:
  141. -119.
  142. Pena-Pereira F., Lavilla I., Bendicho C., 2009.
  143. Miniaturized preconcentration methods based on
  144. liquidââ‚‌“liquid extraction and their application in
  145. inorganic ultratrace analysis and speciation: A
  146. review. Spectrochimica Acta Part B: Atomic
  147. Spectroscopy 64: 1-15.
  148. Xu L., Basheer C., Lee H. K., 2007.
  149. Developments in single-drop microextraction.
  150. Journal of Chromatography A 1152: 184-192.
  151. Psillakis E., Kalogerakis N., 2002.
  152. Developments in single-drop microextraction.
  153. TrAC Trends in Analytical Chemistry 21: 54-64.
  154. Chamsaz M., Arbab-Zavar M. H., Nazari S.,
  155. Determination of arsenic by electrothermal
  156. atomic absorption spectrometry using headspace
  157. liquid phase microextraction after in situ hydride
  158. generation. Journal of Analytical Atomic
  159. Spectrometry 18: 1279-1282.
  160. Xia L., Hu B., Jiang Z., Wu Y., Liang Y.,
  161. Single-Drop Microextraction Combined
  162. with Low-Temperature Electrothermal
  163. Vaporization ICPMS for the Determination of
  164. Trace Be, Co, Pd, and Cd in Biological Samples.
  165. Analytical Chemistry 76: 2910-2915.
  166. Liang P., Liu R., Cao J., 2008. Single drop
  167. microextraction combined with graphite furnace
  168. atomic absorption spectrometry for determination
  169. of lead in biological samples. Microchimica Acta
  170. : 135-139.
  171. Fan Z., 2007. Determination of antimony(III)
  172. and total antimony by single-drop microextraction
  173. combined with electrothermal atomic absorption
  174. spectrometry. Analytica Chimica Acta 585: 300-
  175. Fan Z., Zhou W., 2006. Dithizoneââ‚‌“chloroform
  176. single drop microextraction system combined with
  177. electrothermal atomic absorption spectrometry
  178. using Ir as permanent modifier for the
  179. determination of Cd in water and biological
  180. samples. Spectrochimica Acta Part B: Atomic
  181. Spectroscopy 61: 870-874.
  182. Maltez H. F., Borges D. L. G., Carasek E.,
  183. Welz B., Curtius A. J., 2008. Single drop microextraction
  184. with O,O-diethyl dithiophosphate for
  185. the determination of lead by electrothermal atomic
  186. absorption spectrometry. Talanta 74: 800-805.
  187. Li L., Hu B., Xia L., Jiang Z., 2006.
  188. Determination of trace Cd and Pb in
  189. environmental and biological samples by ETVICP-
  190. MS after single-drop microextraction. Talanta
  191. : 468-473.
  192. Swatloski R. P., Holbrey J. D., Rogers R. D.,
  193. Ionic liquids are not always green:
  194. hydrolysis of 1-butyl-3-methylimidazolium
  195. hexafluorophosphate. Green Chemistry 5: 361-
  196. Pandey S., 2006. Analytical applications of
  197. room-temperature ionic liquids: A review of recent
  198. efforts. Analytica Chimica Acta 556: 38-45.
  199. Wei G. T., Yang Z., Chen C. J., 2003. Room
  200. temperature ionic liquid as a novel medium for
  201. liquid/liquid extraction of metal ions. Analytica
  202. Chimica Acta 488: 183-192.
  203. Hirayama N., Deguchi M., Kawasumi H.,
  204. Honjo T., 2005. Use of 1-alkyl-3-
  205. methylimidazolium hexafluorophosphate room
  206. temperature ionic liquids as chelate extraction
  207. solvent with 4,4,4-trifluoro-1-(2-thienyl)-1,3-
  208. butanedione. Talanta 65: 255-260.
  209. Haixia S., Zaijun L., Ming L., 2007. Ionic
  210. liquid 1-octyl-3-methylimidazolium
  211. hexafluorophosphate as a solvent for extraction of
  212. lead in environmental water samples with
  213. detection by graphite furnace atomic absorption
  214. spectrometry. Microchimica Acta 159: 95-100.
  215. Manzoori J. L., Amjadi M., Abulhassani J.,
  216. Ionic liquid-based single drop
  217. microextraction combined with electrothermal
  218. atomic absorption spectrometry for the
  219. determination of manganese in water samples.
  220. Talanta 77: 1539-1544.
  221. Manzoori J. L., Amjadi M., Abulhassani J.,
  222. Ultra-trace determination of lead in water
  223. and food samples by using ionic liquid-based
  224. single drop microextraction-electrothermal atomic
  225. absorption spectrometry. Analytica Chimica Acta
  226. : 48-52.
  227. Ye C., Zhou Q., Wang X., 2007. Improved
  228. single-drop microextraction for high sensitive
  229. analysis. Journal of Chromatography A 1139: 7-
  230. Jeannot M. A., Cantwell F. F., 1997. Mass
  231. Transfer Characteristics of Solvent Extraction into
  232. a Single Drop at the Tip of a Syringe Needle.
  233. Analytical Chemistry 69: 235-239.