Antimicrobial and Barrier Properties of Bovine Gelatin Films Reinforced by Nano TiO2


Biopolymer Research Group, Food Science and Technology Division, Agriculture Department, Damghan Branch, Islamic Azad University, Damghan, Semanan, Iran


The effects of nano titanium dioxide incorporation were investigated on the water vaporpermeability, oxygen permeability, and antimicrobial properties of bovine gelatin films. The nano TiO2 (TiO2-N) was homogenized by sonication and incorporated into bovine gelatin solutions at different concentrations(e.g. 1, 2, 3, and 5% w/w of dried gelatin). The permeability of the films to water vapor and oxygen wassignificantly decreased by incorporating of low concentration TiO2-N to gelatin solutions. TiO2-N gelatin filmsshowed an excellent antimicrobial activity against Staphylococcus aureus and Escherichia coli. Theseproperties suggest that TiO2-N has the potential as filler in gelatin-based films for using as an active packagingmaterials in pharmaceutical and food packaging industries.


Narayanamurti V., Frontiers in Nanoscience and
Technology in the 21st Century and New Models
for Research and Education at the Intersection of
Basic Research and Technology. ASME
Conference Proceedings, 2006. 1203-1204.
Kurian M., Dasgupta A., Galvin M. E.,
Ziegler C. R., Beyer F. L., A Novel Route to
Inducing Disorder in Model Polymer-Layered
Silicate Nanocomposites. Macromolecules. 2006,
, 1864-1871.
Fu L., Liu Z., Liu Y., Han B., Hu P., Cao L.,
Zhu D., Beaded Cobalt Oxide Nanoparticles along
Carbon Nanotubes: Towards More Highly
Integrated Electronic Devices. Advanced Materials
, 2005. 17, 217-221.
Stoimenov P. K., Klinger R. L., Marchin G. L.,
Klabunde, K. J., Metal Oxide Nanoparticles as
Bactericidal Agents. Langmuir, 2002. 18, 6679-
Lin W., Xu Y., Huang C. C., Ma Y., Shannon
K., Chen D. R., Huang Y. W., Toxicity of nanoand
micro-sized ZnO particles in human lung
epithelial cells. Journal of Nanoparticle Research,
11, 25-39.
Nafchi A. M., Nassiri R., Sheibani S., Ariffin F.,
Karim A. A., Preparation and characterization of
bionanocomposite films filled with nanorod-rich
zinc oxide. Carbohydrate Polymers, 2013. 96,
Alebooyeh R., Mohammadi Nafchi A., Jokar
M., The Effects of ZnO nanorods on the
Characteristics of Sago Starch Biodegradable
Films. The Journal of Chemical Health Risks ,
2, 13-16.
Nafchi A. M., Alias A. K., Mahmud S., Robal
M., Antimicrobial, rheological, and
physicochemical properties of sago starch films
filled with nanorod-rich zinc oxide. Journal of
Food Engineering, 2012. 113, 511ââ‚‌“519.
Voon H., Bhat R., Easa A., Liong M. T., Karim
A. A., Effect of Addition of Halloysite Nanoclay
and SiO2 Nanoparticles on Barrier and Mechanical
Properties of Bovine Gelatin Films. Food
Bioprocess Technol, 2012. 5, 1766-1774.
Torabi Z., Mohammadi Nafchi A., The Effects
of SiO2 Nanoparticles on Mechanical and
Physicochemical Properties of Potato Starch
Films. The Journal of Chemical Health Risks ,
3, 33-42.
Chawengkijwanich C., Hayata Y.,
Development of TiO2 powder-coated food
packaging film and its ability to inactivate
Escherichia coli in vitro and in actual tests.
International Journal of Food Microbiology, 2008.
, 288-292.
Yao K. S., Wang D. Y., Ho W. Y., Yan J. J.,
Tzeng K. C., Photocatalytic bactericidal effect of
TiO2 thin film on plant pathogens. Surface and
Coatings Technology, 2007. 201, 6886-6888.
Darder M., Aranda P., Ruiz-Hitzky E.,
Bionanocomposites: A New Concept of
Ecological, Bioinspired, and Functional Hybrid
Materials. Advanced Materials, 2007. 19, 1309-
Ozin G. A., Arsenault A. C., Cademartiri L.,
Nanochemistry : a chemical approach to
nanomaterials. Royal Society of Chemistry:
Cambridge, 2009.
Kumar A. P., Singh R. P., Biocomposites of
cellulose reinforced starch: Improvement of
properties by photo-induced crosslinking.
Bioresource Technology, 2008. 99, 8803-8809.
Liu H. L., Yang T. C. K., Photocatalytic
inactivation of Escherichia coli and Lactobacillus
helveticus by ZnO and TiO2 activated with
ultraviolet light. Process Biochemistry, 2003. 39,
Abdorreza M. N., Cheng L. H., Karim A. A.,
Effects of plasticizers on thermal properties and
heat sealability of sago starch films. Food
Hydrocolloids, 2011. 25, 56-60.
Yu J., Yang J., Liu B., Ma X., Preparation and
characterization of glycerol plasticized-pea
starch/ZnO-carboxymethylcellulose sodium
nanocomposites. Bioresource Technology, 2009.
, 2832-2841.
ASTM, Standard Test Methods for Water
Vapor Transmission of Materials E96/E96M-05.
In Annual Book of ASTM Standards, Philadelphia,
PA, 2005.
ASTM, Standard Test Methods for Oxygen
Gas Transmission Rate Through Plastic Film and
Sheeting Using a Coulometric Sensor D 3985 -05.
In Annual Book of ASTM Standards, Philadelphia,
PA, 2005.
Maizura M., Fazilah A., Norziah M. H., Karim
A. A., Antibacterial Activity and Mechanical
Properties of Partially Hydrolyzed Sago Starchââ‚‌“
Alginate Edible Film Containing Lemongrass Oil.
Journal of Food Science, 2007. 72, C324-C330.
Nielsen L. E., Models for the Permeability of
Filled Polymer Systems. Journal of
Macromolecular Science: Part A ââ‚‌“ Chemistry,
1, 929 - 942.
Li J. H., Hong R. Y., Li M. Y., Li H. Z., Zheng
Y., Ding J., Effects of ZnO nanoparticles on the
mechanical and antibacterial properties of
polyurethane coatings. Progress in Organic
Coatings, 2009. 64, 504-509.
Li X. H., Xing Y. G., Li W. L., Jiang Y. H.,
Ding Y. L., Antibacterial and Physical Properties
of Poly(vinyl chloride)-based Film Coated with
ZnO Nanoparticles. Food Science and Technology
International, 2010. 16, 225-232.
Zhang L., Ding Y., Povey M., York D., ZnO
nanofluids - A potential antibacterial agent.
Progress in Natural Science, 2008. 18, 939-944.
Zhang L., Jiang Y., Ding Y., Daskalakis N.,
Jeuken L., Povey M., Oââ‚‌™Neill A., York D.,
Mechanistic investigation into antibacterial
behaviour of suspensions of ZnO nanoparticles
against <i>E. coli</i>. Journal of
Nanoparticle Research 2010, 12, 1625-1636.