Electrospun Nanofibrous Membranes as Potential Adsorbents for Textile Dye Removal-A review

Authors

Department of Textile Engineering, University of Guilan, Rasht, Iran

Abstract

Textile wastewaters due to the toxic effects of dyestuffs and other organic compounds and their stability toward light and oxidizing agents have led to an environmental problem. Several treatment methods for dye removal have been investigated. Membrane process is one of the simplest and most effective methods for dye removal from industrial wastewaters. Electrospun nanofibrous membranes have high specific surface area, high porosity, and small pore size. Therefore, they have been suggested as excellent candidates for many applications, especially in wastewater treatment. In this paper, we introduce the fundamental aspects of electrospun nanofibrous membranes and their properties, as well as highlight the enormous potential of nanofibrous membrane as adsorbents for textile dye removal. Finally, characteristic parameters for membrane performance are enumerated. Permeation flux, rejection, membrane porosity, permeability, molecular weight cut off, and decolorization are considered to be the most important ones.

Keywords


  1. Vandevivere P.C., Bianchi R., Verstraete
  2. W., 1998. Treatment and reuse of
  3. wastewater from the textile wetprocessing
  4. industry: review of emerging
  5. technologies, J. Chem. Technol. Biot., 72,
  6. -302.
  7. Robinson T., McMullan G., Marchant R.,
  8. Nigam P., 2001. Remediation of dyes in
  9. textile effluent: a critical review on
  10. current treatment technologies with a
  11. proposed alternative, Bioresource.
  12. Technol., 77, 247-255.
  13. Banat I.M., Nigam P., Singh D.,
  14. Marchant R., 1996. Microbial
  15. decolourization of textile-dye containing
  16. effluents: a review, Bioresource.
  17. Technol., 58, 217ââ‚‌“27.
  18. Slokar Y.M., Le Marechal A. M., 1998.
  19. Methods of decoloration of textile
  20. wastewaters, Dyes. Pigments., 37, 335ââ‚‌“
  21. Dele´e W., ONeill C., Hawkes F.R.,
  22. Pinheiro H.M., 1998. Anaerobic
  23. treatment of textile effluents: a review, J.
  24. Chem. Technol. Biot., 73, 323ââ‚‌“335.
  25. Cooper P., 1993. Removing color from
  26. dyehouse waste waters: a critical review
  27. of technology available, J. Soc. Dyers.
  28. Colorists., 109, 97ââ‚‌“100.
  29. Crini G., Robert C., Gimbert F., Martel
  30. B., Adam O., De Giorgi F., 2008. The
  31. removal of Basic Blue 3 from aqueous
  32. solutions by chitosan based adsorbent:
  33. batch studies, J. Hazard. Mater., 153,
  34. ââ‚‌“106.
  35. Dutta, P.K., Bhavani, K.D., Sharma, N.;
  36. Adsorption for dyehouse effluent
  37. by low cost adsorbent (chitosan), Asian.
  38. Text. J., 10, 57ââ‚‌“63.
  39. Xu Y., Lebrun R.E., 1999. Treatment of
  40. textile dye plant effluent by nanofiltration
  41. membrane, Sep. Sci. Technol., 34, 2501ââ‚‌“
  42. Bechtold T., Burtscher E., Turcanu A.,
  43. Cathodic decolorisation of textile
  44. wastewater containing reactive dyes
  45. using multi-cathode electrolyser, J.
  46. Chem. Technol. Biot., 76, 303ââ‚‌“311.
  47. Papic S., Koprivanac N., Bozic A.L.,
  48. Metes A., 2004. Removal some reactive
  49. dyes from synthetic wastewater by
  50. combined Al (III) coagulation/carbon
  51. adsorption process, Dyes. Pigments., 62,
  52. ââ‚‌“298.
  53. Akhtar N., Iqbal J., Iqbal M., 2004.
  54. Enhancement of Lead(II) biosorption by
  55. microalgal biomass immobilized onto
  56. Loofa (Luffa cylindrica) sponge, Eng.
  57. Life. Sci., 4, 171ââ‚‌“178.
  58. Kahraman S., Asma D., Erdemoglu S.,
  59. Yesilada O., 2005. Biosorption of
  60. Copper(II) by live and dried biomass of
  61. the white rot fungi Phanerochaete
  62. chrysosporium and Funalia trogii, Eng.
  63. Life. Sci., 5, 72ââ‚‌“77.
  64. Marrot B., Roche N., 2002. Wastewater
  65. treatment and reuse in textile industries, a
  66. review, Res. Adv. In Water Res., 3, 41-53.
  67. Aptel P., Buckley C.A., 1996. Categories
  68. of membrane operations. in ââ‚‌˜water
  69. treatment: membrane processââ‚‌™ (eds.:
  70. Mallevialle J., Odendaal P.E. and
  71. Winsner M.R.) McGraw-Hill, New York.
  72. Ondarçuhu T., Joachim C., 1998.
  73. Drawing a single nanofibre over
  74. hundreds of microns, Europhys. Lett., 42,
  75. ââ‚‌“220.
  76. Feng L., Li S., Li Y., Li H., Zhang L.,
  77. Zhai J., Song Y., Liu B., Jiang L., Zhu
  78. D., 2002. Super-hydrophobic surfaces:
  79. from natural to artificial, Adv. Mater., 14,
  80. ââ‚‌“1223.
  81. Ma P.X., Zhang R., 1999. Synthetic
  82. nano-scale fibrous extracellular matrix, J.
  83. Biomed. Mater. Res., 46, 60ââ‚‌“72.
  84. Liu G., Ding J., Qiao L., Guo A., Dymov
  85. B.P., Gleeson J.T., Hashimoto T.K., Saijo
  86. K., 1999. Polystyrene-block-poly(2-
  87. cinnamoyl ethyl methacrylate)
  88. nanofibers preparation, characterization,
  89. and liquid crystalline properties. Chem-A
  90. Eur. J., 5, 2740ââ‚‌“2749.
  91. Doshi J., Reneker D.H., 1995.
  92. Electrospinning process and applications
  93. of electrospun fibers, J. Electrostat., 35,
  94. ââ‚‌“160.
  95. Shams Nateri A., Hasanzadeh M., 2009.
  96. Using fuzzy-logic and neural network
  97. techniques to evaluating polyacrylonitrile
  98. nanofiber diameter. J. Comput. Theor.
  99. Nanosci., 6, 1542-1545.
  100. Haghi A.K., Akbari M., 2007. Trends in
  101. electrospinning of natural nanofibers.
  102. Phys. Status. Solidi. A., 204, 1830-1834.
  103. Ziabari M., Mottaghitalab V., Haghi
  104. A.K., 2009. A novel approach for
  105. analysis of processing parameters in
  106. electrospinning of nanofibers. in
  107. ââ‚‌˜Nanofibers: fabrication, performance,
  108. and applicationsââ‚‌™ (ed. Chang W.N.) Nova
  109. Science Publishers, New York.
  110. Hadavi Moghadam B., Hasanzadeh M.,
  111. Haghi A.K. 2013. On the contact angle of
  112. electrospun polyacrylonitrile nanofiber
  113. mat. Bulg. Chem. Commun., 45, 169-177.
  114. Hasanzadeh M., Hadavi Moghadam B.,
  115. Moghadam Abatari M.H., Haghi A.K.,
  116. On the production optimization of
  117. polyacrylonitrile electrospun nanofiber.
  118. Bulg. Chem.Commun., 45, 178-190.
  119. Hadavi Moghadam B., Hasanzadeh M.,
  120. Predicting contact angle of
  121. electrospun polyacrylonitrile nanofiber
  122. mat by artificial neural networks and
  123. statistical techniques. Adv. Polym. Tech.,
  124. doi: 10.1002/adv.21365,
  125. Rabbi R., Nasouri K., Bahrambeygi H.,
  126. Shoushtari A.M., Babaei M.R., 2012.
  127. RSM and ANN approaches for modeling
  128. and optimizing of electrospun
  129. polyurethane nanofibers morphology.
  130. Fiber. Polym., 13, 1007-1014.
  131. Sabetzadeh N., Bahrambeygi H., Rabbi
  132. A., Nasouri K., 2012. Thermal
  133. conductivity of polyacrylonitrile
  134. nanofiber web in various nanofiber
  135. diameters and surface densities. Micro.
  136. Nano. Lett., 7, 662-666.
  137. Rošic R., Pelipenko J., Kristl J., Kocbek
  138. P., Baumgartner S., 2012. Properties,
  139. Engineering and Applications of
  140. PolymericNanofibers: Current Research
  141. and Future Advances. Chem. Biochem.
  142. Eng. Q., 26, 417ââ‚‌“425.
  143. Andrady A.L., 2008. Science and
  144. technology of polymer nanofibers. Wiley,
  145. USA.
  146. Brown P.J., Stevens K., 2007. Nanofibers
  147. and nanotechnology in textiles.
  148. Woodhead, England.
  149. Sun Z., Zussman E., Yarin A.L.,
  150. Wendorff J.H., Greiner A., 2003.
  151. Compound core-shell polymer nanofibers
  152. by co-electrospinning, Adv. Mater., 15,
  153. -1932.
  154. Ramakrishna S., Fujihara K., Teo W.E.,
  155. Lim T.C., Ma Z., 2005. An introduction
  156. to electrospinning and nanofibers. World
  157. scientific, Singapore.
  158. Zussman E., Yarin A.L., Bazilevsky
  159. A.V., Avrahami R., Feldman M., 2006.
  160. Electrospun
  161. polyacrylonitrile/poly(methyl
  162. methacrylate)-derived turbostratic carbon
  163. micro-/nanotubes, Adv. Mater., 18, 348-
  164. Nasouri K., Shoushtari A.M., Kaflou A.,
  165. Bahrambeygi H., Rabbi A., 2012. Singlewall
  166. carbon nanotubes dispersion
  167. behavior and its effects on the
  168. morphological and mechanical properties
  169. of the electrospun nanofibers, Polym.
  170. Composite., 33, 1951-1959.
  171. Yang S.Y., Taha-Tijerina J., Serrato-Diaz
  172. V., Hernandez K., Lozano K., 2007.
  173. Dynamic mechanical and thermal
  174. analysis of aligned vapor grown carbon
  175. nanofiber reinforced polyethylene.
  176. Composites B, 38, 228ââ‚‌“235.
  177. Bahrambeygi H., Sabetzadeh N., Rabbi
  178. A., Nasouri K., Shoushtari A.M., Babaei
  179. M.R., 2013. Nanofibers (PU and PAN)
  180. and nanoparticles (Nanoclay and
  181. MWNTs) simultaneous effects on
  182. polyurethane foam sound absorption. J.
  183. Polym. Res., 20, 1-10.
  184. Al-Saleh M.H., Sundararaj U., 2011.
  185. Review of the mechanical properties of
  186. carbon nanofiber/polymer composites.
  187. Composites A, 42, 2126-2142.
  188. Moridi Z., Mottaghitalab V., Haghi A.K.,
  189. A Detailed Review of Recent
  190. Progress in Carbon Nanotube/Chitosan
  191. Nanocomposites. Cellulose Chem
  192. Technol, 45, 549-563.
  193. Han L.F., Xu Z.L., Yu L.Y., Wei Y.M.,
  194. Cao Y., 2010. Performance of
  195. PVDF/multi-nanoparticles composite
  196. hollow fibre ultrafiltration membranes,
  197. Iran. Polym. J., 19, 553-565.
  198. Boerlage S. F. E., 2001. Scaling and
  199. particulate fouling in membrane filtration
  200. systems. Swets & Zeitlinger Publisher,
  201. Lisse.
  202. McDonald R., 1997. Colour physics for
  203. industry. Society of Dyers and
  204. Colourists, London.
  205. Dorthy C.A.M., Sivaraj R., Venckatesh
  206. R., 2012. Decolorization of reactive
  207. violet ââ‚‌“ 2RL dye by aspergillus flavus
  208. and aspergillus fumigatus from textile
  209. sludge, Int. Res. J. Environ. Sci., 1, 8-12