Electrospun Nanofibrous Membranes as Potential Adsorbents for Textile Dye Removal-A review


Department of Textile Engineering, University of Guilan, Rasht, Iran


Textile wastewaters due to the toxic effects of dyestuffs and other organic compounds and their stability toward light and oxidizing agents have led to an environmental problem. Several treatment methods for dye removal have been investigated. Membrane process is one of the simplest and most effective methods for dye removal from industrial wastewaters. Electrospun nanofibrous membranes have high specific surface area, high porosity, and small pore size. Therefore, they have been suggested as excellent candidates for many applications, especially in wastewater treatment. In this paper, we introduce the fundamental aspects of electrospun nanofibrous membranes and their properties, as well as highlight the enormous potential of nanofibrous membrane as adsorbents for textile dye removal. Finally, characteristic parameters for membrane performance are enumerated. Permeation flux, rejection, membrane porosity, permeability, molecular weight cut off, and decolorization are considered to be the most important ones.


Vandevivere P.C., Bianchi R., Verstraete
W., 1998. Treatment and reuse of
wastewater from the textile wetprocessing
industry: review of emerging
technologies, J. Chem. Technol. Biot., 72,
Robinson T., McMullan G., Marchant R.,
Nigam P., 2001. Remediation of dyes in
textile effluent: a critical review on
current treatment technologies with a
proposed alternative, Bioresource.
Technol., 77, 247-255.
Banat I.M., Nigam P., Singh D.,
Marchant R., 1996. Microbial
decolourization of textile-dye containing
effluents: a review, Bioresource.
Technol., 58, 217ââ‚‌“27.
Slokar Y.M., Le Marechal A. M., 1998.
Methods of decoloration of textile
wastewaters, Dyes. Pigments., 37, 335ââ‚‌“
Dele´e W., ONeill C., Hawkes F.R.,
Pinheiro H.M., 1998. Anaerobic
treatment of textile effluents: a review, J.
Chem. Technol. Biot., 73, 323ââ‚‌“335.
Cooper P., 1993. Removing color from
dyehouse waste waters: a critical review
of technology available, J. Soc. Dyers.
Colorists., 109, 97ââ‚‌“100.
Crini G., Robert C., Gimbert F., Martel
B., Adam O., De Giorgi F., 2008. The
removal of Basic Blue 3 from aqueous
solutions by chitosan based adsorbent:
batch studies, J. Hazard. Mater., 153,
Dutta, P.K., Bhavani, K.D., Sharma, N.;
Adsorption for dyehouse effluent
by low cost adsorbent (chitosan), Asian.
Text. J., 10, 57ââ‚‌“63.
Xu Y., Lebrun R.E., 1999. Treatment of
textile dye plant effluent by nanofiltration
membrane, Sep. Sci. Technol., 34, 2501ââ‚‌“
Bechtold T., Burtscher E., Turcanu A.,
Cathodic decolorisation of textile
wastewater containing reactive dyes
using multi-cathode electrolyser, J.
Chem. Technol. Biot., 76, 303ââ‚‌“311.
Papic S., Koprivanac N., Bozic A.L.,
Metes A., 2004. Removal some reactive
dyes from synthetic wastewater by
combined Al (III) coagulation/carbon
adsorption process, Dyes. Pigments., 62,
Akhtar N., Iqbal J., Iqbal M., 2004.
Enhancement of Lead(II) biosorption by
microalgal biomass immobilized onto
Loofa (Luffa cylindrica) sponge, Eng.
Life. Sci., 4, 171ââ‚‌“178.
Kahraman S., Asma D., Erdemoglu S.,
Yesilada O., 2005. Biosorption of
Copper(II) by live and dried biomass of
the white rot fungi Phanerochaete
chrysosporium and Funalia trogii, Eng.
Life. Sci., 5, 72ââ‚‌“77.
Marrot B., Roche N., 2002. Wastewater
treatment and reuse in textile industries, a
review, Res. Adv. In Water Res., 3, 41-53.
Aptel P., Buckley C.A., 1996. Categories
of membrane operations. in ââ‚‌˜water
treatment: membrane processââ‚‌™ (eds.:
Mallevialle J., Odendaal P.E. and
Winsner M.R.) McGraw-Hill, New York.
Ondarçuhu T., Joachim C., 1998.
Drawing a single nanofibre over
hundreds of microns, Europhys. Lett., 42,
Feng L., Li S., Li Y., Li H., Zhang L.,
Zhai J., Song Y., Liu B., Jiang L., Zhu
D., 2002. Super-hydrophobic surfaces:
from natural to artificial, Adv. Mater., 14,
Ma P.X., Zhang R., 1999. Synthetic
nano-scale fibrous extracellular matrix, J.
Biomed. Mater. Res., 46, 60ââ‚‌“72.
Liu G., Ding J., Qiao L., Guo A., Dymov
B.P., Gleeson J.T., Hashimoto T.K., Saijo
K., 1999. Polystyrene-block-poly(2-
cinnamoyl ethyl methacrylate)
nanofibers preparation, characterization,
and liquid crystalline properties. Chem-A
Eur. J., 5, 2740ââ‚‌“2749.
Doshi J., Reneker D.H., 1995.
Electrospinning process and applications
of electrospun fibers, J. Electrostat., 35,
Shams Nateri A., Hasanzadeh M., 2009.
Using fuzzy-logic and neural network
techniques to evaluating polyacrylonitrile
nanofiber diameter. J. Comput. Theor.
Nanosci., 6, 1542-1545.
Haghi A.K., Akbari M., 2007. Trends in
electrospinning of natural nanofibers.
Phys. Status. Solidi. A., 204, 1830-1834.
Ziabari M., Mottaghitalab V., Haghi
A.K., 2009. A novel approach for
analysis of processing parameters in
electrospinning of nanofibers. in
ââ‚‌˜Nanofibers: fabrication, performance,
and applicationsââ‚‌™ (ed. Chang W.N.) Nova
Science Publishers, New York.
Hadavi Moghadam B., Hasanzadeh M.,
Haghi A.K. 2013. On the contact angle of
electrospun polyacrylonitrile nanofiber
mat. Bulg. Chem. Commun., 45, 169-177.
Hasanzadeh M., Hadavi Moghadam B.,
Moghadam Abatari M.H., Haghi A.K.,
On the production optimization of
polyacrylonitrile electrospun nanofiber.
Bulg. Chem.Commun., 45, 178-190.
Hadavi Moghadam B., Hasanzadeh M.,
Predicting contact angle of
electrospun polyacrylonitrile nanofiber
mat by artificial neural networks and
statistical techniques. Adv. Polym. Tech.,
doi: 10.1002/adv.21365,
Rabbi R., Nasouri K., Bahrambeygi H.,
Shoushtari A.M., Babaei M.R., 2012.
RSM and ANN approaches for modeling
and optimizing of electrospun
polyurethane nanofibers morphology.
Fiber. Polym., 13, 1007-1014.
Sabetzadeh N., Bahrambeygi H., Rabbi
A., Nasouri K., 2012. Thermal
conductivity of polyacrylonitrile
nanofiber web in various nanofiber
diameters and surface densities. Micro.
Nano. Lett., 7, 662-666.
Rošic R., Pelipenko J., Kristl J., Kocbek
P., Baumgartner S., 2012. Properties,
Engineering and Applications of
PolymericNanofibers: Current Research
and Future Advances. Chem. Biochem.
Eng. Q., 26, 417ââ‚‌“425.
Andrady A.L., 2008. Science and
technology of polymer nanofibers. Wiley,
Brown P.J., Stevens K., 2007. Nanofibers
and nanotechnology in textiles.
Woodhead, England.
Sun Z., Zussman E., Yarin A.L.,
Wendorff J.H., Greiner A., 2003.
Compound core-shell polymer nanofibers
by co-electrospinning, Adv. Mater., 15,
Ramakrishna S., Fujihara K., Teo W.E.,
Lim T.C., Ma Z., 2005. An introduction
to electrospinning and nanofibers. World
scientific, Singapore.
Zussman E., Yarin A.L., Bazilevsky
A.V., Avrahami R., Feldman M., 2006.
methacrylate)-derived turbostratic carbon
micro-/nanotubes, Adv. Mater., 18, 348-
Nasouri K., Shoushtari A.M., Kaflou A.,
Bahrambeygi H., Rabbi A., 2012. Singlewall
carbon nanotubes dispersion
behavior and its effects on the
morphological and mechanical properties
of the electrospun nanofibers, Polym.
Composite., 33, 1951-1959.
Yang S.Y., Taha-Tijerina J., Serrato-Diaz
V., Hernandez K., Lozano K., 2007.
Dynamic mechanical and thermal
analysis of aligned vapor grown carbon
nanofiber reinforced polyethylene.
Composites B, 38, 228ââ‚‌“235.
Bahrambeygi H., Sabetzadeh N., Rabbi
A., Nasouri K., Shoushtari A.M., Babaei
M.R., 2013. Nanofibers (PU and PAN)
and nanoparticles (Nanoclay and
MWNTs) simultaneous effects on
polyurethane foam sound absorption. J.
Polym. Res., 20, 1-10.
Al-Saleh M.H., Sundararaj U., 2011.
Review of the mechanical properties of
carbon nanofiber/polymer composites.
Composites A, 42, 2126-2142.
Moridi Z., Mottaghitalab V., Haghi A.K.,
A Detailed Review of Recent
Progress in Carbon Nanotube/Chitosan
Nanocomposites. Cellulose Chem
Technol, 45, 549-563.
Han L.F., Xu Z.L., Yu L.Y., Wei Y.M.,
Cao Y., 2010. Performance of
PVDF/multi-nanoparticles composite
hollow fibre ultrafiltration membranes,
Iran. Polym. J., 19, 553-565.
Boerlage S. F. E., 2001. Scaling and
particulate fouling in membrane filtration
systems. Swets & Zeitlinger Publisher,
McDonald R., 1997. Colour physics for
industry. Society of Dyers and
Colourists, London.
Dorthy C.A.M., Sivaraj R., Venckatesh
R., 2012. Decolorization of reactive
violet ââ‚‌“ 2RL dye by aspergillus flavus
and aspergillus fumigatus from textile
sludge, Int. Res. J. Environ. Sci., 1, 8-12