The Effects of SiO2 Nanoparticles on Mechanical and Physicochemical Properties of Potato Starch Films


Biopolymer Research Group, Food Science and Technology Division, Agriculture Department, Damghan Branch, Islamic Azad University, Damghan, Semnan, Iran


In this paper effect of SiO2 nanoparticles was investigated on potato starch films. Potato starch films were prepared by casting method with addition of nano-silicon dioxide and a mixture of sorbitol/glycerol (weight ratio of 3 to 1) as plasticizers. SiO2 nanoparticles incorporated to the potato starch films at different concentrations 0, 1, 2, 3, and 5% of total solid, and the films were dried under controlled conditions.  Physicochemical properties such as water absorption capacity (WAC), water vapor permeability (WVP) and mechanical properties of the films were measured. Results show that by increasing the concentration of silicon dioxide nanoparticles, mechanical properties of films can be improved. Also incorporation of silicon dioxide nanoparticles in the structure of biopolymer decrease permeability of the gaseous molecules such as water vapor. In summary, addition of silicon dioxide nanoparticles improves functional properties of potato starch films and these bio Nano composites can be used in food packaging.


Pavlath A., Orts W., Edible Films and
Coatings: Why, What, and How? In: Huber KC,
Embuscado ME, eds. Edible Films and Coatings
for Food Applications: Springer New York,
Lacroix M., Mechanical and Permeability
Properties of Edible Films and Coatings for Food
and Pharmaceutical Applications. In: Huber KC,
Embuscado ME, eds. Edible Films and Coatings
for Food Applications: Springer New York;
Mohammadi Nafchi A., Moradpour M.,
Saeidi M., Alias A.K., Thermoplastic starches:
Properties, challenges, and prospects. Starch ââ‚‌“
Stärke, 2013. 65(1-2):61. doi:
Li J. H., Hong R. Y., Li M. Y., Li H. Z.,
Zheng Y., Ding J., Effects of ZnO nanoparticles on
the mechanical and antibacterial properties of
polyurethane coatings. Progress in Organic
Coatings. 3// 2009. 64(4):504. doi:
Simo R., Cordenunsi B., Characterization
of starch granules. Starches. Vol null: CRC Press,
Ellis R. P., Cochrane M. P., Dale M. F.
B., Duffus C. M., Lynn A., Morrison I. M., Starch
production and industrial use. Journal of the
Science of Food and Agriculture, 1998. 77(3):289.
doi: 10.1002/(SICI)1097-
Zou D., Yoshida H., Size effect of silica
nanoparticles on thermal decomposition of
PMMA. Journal of Thermal Analysis and
Calorimetry. 2010. 99(1):21. doi: 10.1007/s10973-
Myllärinen P., Buleon A., Lahtinen R.,
Forssell P., The crystallinity of amylose and
amylopectin films. Carbohydrate Polymers, 4/1/
48(1):41. doi:
Abdorreza M. N., Cheng L. H., Karim A.
A., Effects of plasticizers on thermal properties
and heat sealability of sago starch films. Food
Hydrocolloids. 2011, 25(1):56. doi: DOI:
ASTM. Standard Test Method for
Tensile Properties of Thin Plastic Sheeting D882ââ‚‌“
Annual book of ASTM standards.
Philadelphia, PA2010.
Maizura M., Fazilah A., Norziah M.,
Karim A., Antibacterial Activity and Mechanical
Properties of Partially Hydrolyzed Sago Starchââ‚‌“
Alginate Edible Film Containing Lemongrass Oil.
Journal of Food Science, 2007. 72(6):C324. doi:
Laohakunjit N., Noomhorm A., Effect of
plasticizers on mechanical and barrier properties of
rice starch film. Starch/Staerke, 2004. 56(8):348.
McHugh T. H., Avena-Bustillos R.,
Krochta J., Hydrophilic Edible Films: Modified
Procedure for Water Vapor Permeability and
Explanation of Thickness Effects. Journal of Food
Science, 1993. 58(4):899. doi: 10.1111/j.1365-
ASTM. Standard Test Methods for Water
Vapor Transmission of Materials E96/E96M-05.
Annual Book of ASTM Standards. Philadelphia,
PA, 2005.
Kiatkamjornwong S., Chomsaksakul W.,
Sonsuk M., Radiation modification of water
absorption of cassava starch by acrylic
acid/acrylamide. Radiation Physics and Chemistry,
59(4):413. doi: 10.1016/s0969-
Wu M., Wang M., Ge M., Investigation
into the performance and mechanism of SiO2
nanoparticles and starch composite films. Journal
of the Textile Institute, 2009. 100(3):254
Nafchi A. M., Nassiri R., Sheibani S.,
Ariffin F., Karim A. A., Preparation and
characterization of bionanocomposite films filled
with nanorod-rich zinc oxide. Carbohydrate
Polymers. 7/1/ 2013. 96(1):233. doi:
Schlemmer D., Angélica R. S., Sales M.
J. A., Morphological and thermomechanical
characterization of thermoplastic
starch/montmorillonite nanocomposites.
Composite Structures. 2010. 92(9):2066.
Godbillot L., Dole P., Joly C., Rogé B.,
Mathlouthi M., Analysis of water binding in
starch plasticized films. Food Chemistry, 2006.
(3):380. doi: DOI: 10.1016/j.foodchem, 2005.
Lourdin D., Coignard L., Bizot H.,
Colonna P., Influence of equilibrium relative
humidity and plasticizer concentration on the
water content and glass transition of starch
materials. Polymer, 1997. 38(21):5401.
Bajpai S. K., Chand N., Chaurasia V.,
Investigation of water vapor permeability and
antimicrobial property of zinc oxide nanoparticlesloaded
chitosan-based edible film. Journal of
Applied Polymer Science, 2010. 115(2):674. doi:
Wu M., Wang Y., Wang M., Ge M.,
Effect of SiO2 Nanoparticles on the Wear
Resistance of Starch Films. Fiber and textiles in
Eastern Europe, 2008. 16(4):96.
Voon H., Bhat R., Easa A., Liong M. T.,
Karim A. A., Effect of Addition of Halloysite
Nanoclay and SiO2 Nanoparticles on Barrier and
Mechanical Properties of Bovine Gelatin Films.
Food Bioprocess Technol, 2012/07/01
;5(5):1766. doi: 10.1007/s11947-010-0461-y.
Xia X., Hu Z., Marquez M. Physically
bonded nanoparticle networks: a novel drug
delivery system. Journal of Controlled Release,
103(1):21. doi: DOI:
Tunç S., Duman O., Preparation and
characterization of biodegradable methyl
cellulose/montmorillonite nanocomposite films.
Applied Clay Science, 2010. 48(3):414. doi:
Müller C. M. O., Laurindo J. B.,
Yamashita F., Effect of nanoclay incorporation
method on mechanical and water vapor barrier
properties of starch-based films. Industrial Crops
and Products, 2011. 33(3):605. doi: