The Effects of SiO2 Nanoparticles on Mechanical and Physicochemical Properties of Potato Starch Films

Authors

Biopolymer Research Group, Food Science and Technology Division, Agriculture Department, Damghan Branch, Islamic Azad University, Damghan, Semnan, Iran

Abstract

In this paper effect of SiO2 nanoparticles was investigated on potato starch films. Potato starch films were prepared by casting method with addition of nano-silicon dioxide and a mixture of sorbitol/glycerol (weight ratio of 3 to 1) as plasticizers. SiO2 nanoparticles incorporated to the potato starch films at different concentrations 0, 1, 2, 3, and 5% of total solid, and the films were dried under controlled conditions.  Physicochemical properties such as water absorption capacity (WAC), water vapor permeability (WVP) and mechanical properties of the films were measured. Results show that by increasing the concentration of silicon dioxide nanoparticles, mechanical properties of films can be improved. Also incorporation of silicon dioxide nanoparticles in the structure of biopolymer decrease permeability of the gaseous molecules such as water vapor. In summary, addition of silicon dioxide nanoparticles improves functional properties of potato starch films and these bio Nano composites can be used in food packaging.

Keywords


  1. Pavlath A., Orts W., Edible Films and
  2. Coatings: Why, What, and How? In: Huber KC,
  3. Embuscado ME, eds. Edible Films and Coatings
  4. for Food Applications: Springer New York,
  5. :1.
  6. Lacroix M., Mechanical and Permeability
  7. Properties of Edible Films and Coatings for Food
  8. and Pharmaceutical Applications. In: Huber KC,
  9. Embuscado ME, eds. Edible Films and Coatings
  10. for Food Applications: Springer New York;
  11. :347.
  12. Mohammadi Nafchi A., Moradpour M.,
  13. Saeidi M., Alias A.K., Thermoplastic starches:
  14. Properties, challenges, and prospects. Starch ââ‚‌“
  15. Stärke, 2013. 65(1-2):61. doi:
  16. 1002/star.201200201.
  17. Li J. H., Hong R. Y., Li M. Y., Li H. Z.,
  18. Zheng Y., Ding J., Effects of ZnO nanoparticles on
  19. the mechanical and antibacterial properties of
  20. polyurethane coatings. Progress in Organic
  21. Coatings. 3// 2009. 64(4):504. doi:
  22. http://dx.doi.org/10.1016/j.porgcoat.2008.08.013.
  23. Simo R., Cordenunsi B., Characterization
  24. of starch granules. Starches. Vol null: CRC Press,
  25. Ellis R. P., Cochrane M. P., Dale M. F.
  26. B., Duffus C. M., Lynn A., Morrison I. M., Starch
  27. production and industrial use. Journal of the
  28. Science of Food and Agriculture, 1998. 77(3):289.
  29. doi: 10.1002/(SICI)1097-
  30. (199807)77:3<289::AID-JSFA38>3.0.CO;2-
  31. D.
  32. Zou D., Yoshida H., Size effect of silica
  33. nanoparticles on thermal decomposition of
  34. PMMA. Journal of Thermal Analysis and
  35. Calorimetry. 2010. 99(1):21. doi: 10.1007/s10973-
  36. -0531-4.
  37. Myllärinen P., Buleon A., Lahtinen R.,
  38. Forssell P., The crystallinity of amylose and
  39. amylopectin films. Carbohydrate Polymers, 4/1/
  40. 48(1):41. doi:
  41. http://dx.doi.org/10.1016/S0144-8617(01)00208-9.
  42. Abdorreza M. N., Cheng L. H., Karim A.
  43. A., Effects of plasticizers on thermal properties
  44. and heat sealability of sago starch films. Food
  45. Hydrocolloids. 2011, 25(1):56. doi: DOI:
  46. 1016/j.foodhyd.2010.05.005.
  47. ASTM. Standard Test Method for
  48. Tensile Properties of Thin Plastic Sheeting D882ââ‚‌“
  49. Annual book of ASTM standards.
  50. Philadelphia, PA2010.
  51. Maizura M., Fazilah A., Norziah M.,
  52. Karim A., Antibacterial Activity and Mechanical
  53. Properties of Partially Hydrolyzed Sago Starchââ‚‌“
  54. Alginate Edible Film Containing Lemongrass Oil.
  55. Journal of Food Science, 2007. 72(6):C324. doi:
  56. 1111/j.1750-3841.2007.00427.x.
  57. Laohakunjit N., Noomhorm A., Effect of
  58. plasticizers on mechanical and barrier properties of
  59. rice starch film. Starch/Staerke, 2004. 56(8):348.
  60. McHugh T. H., Avena-Bustillos R.,
  61. Krochta J., Hydrophilic Edible Films: Modified
  62. Procedure for Water Vapor Permeability and
  63. Explanation of Thickness Effects. Journal of Food
  64. Science, 1993. 58(4):899. doi: 10.1111/j.1365-
  65. 1993.tb09387.x.
  66. ASTM. Standard Test Methods for Water
  67. Vapor Transmission of Materials E96/E96M-05.
  68. Annual Book of ASTM Standards. Philadelphia,
  69. PA, 2005.
  70. Kiatkamjornwong S., Chomsaksakul W.,
  71. Sonsuk M., Radiation modification of water
  72. absorption of cassava starch by acrylic
  73. acid/acrylamide. Radiation Physics and Chemistry,
  74. 59(4):413. doi: 10.1016/s0969-
  75. x(00)00297-8.
  76. Wu M., Wang M., Ge M., Investigation
  77. into the performance and mechanism of SiO2
  78. nanoparticles and starch composite films. Journal
  79. of the Textile Institute, 2009. 100(3):254
  80. Nafchi A. M., Nassiri R., Sheibani S.,
  81. Ariffin F., Karim A. A., Preparation and
  82. characterization of bionanocomposite films filled
  83. with nanorod-rich zinc oxide. Carbohydrate
  84. Polymers. 7/1/ 2013. 96(1):233. doi:
  85. http://dx.doi.org/10.1016/j.carbpol.2013.03.055.
  86. Schlemmer D., Angélica R. S., Sales M.
  87. J. A., Morphological and thermomechanical
  88. characterization of thermoplastic
  89. starch/montmorillonite nanocomposites.
  90. Composite Structures. 2010. 92(9):2066.
  91. Godbillot L., Dole P., Joly C., Rogé B.,
  92. Mathlouthi M., Analysis of water binding in
  93. starch plasticized films. Food Chemistry, 2006.
  94. (3):380. doi: DOI: 10.1016/j.foodchem, 2005.
  95. 054.
  96. Lourdin D., Coignard L., Bizot H.,
  97. Colonna P., Influence of equilibrium relative
  98. humidity and plasticizer concentration on the
  99. water content and glass transition of starch
  100. materials. Polymer, 1997. 38(21):5401.
  101. Bajpai S. K., Chand N., Chaurasia V.,
  102. Investigation of water vapor permeability and
  103. antimicrobial property of zinc oxide nanoparticlesloaded
  104. chitosan-based edible film. Journal of
  105. Applied Polymer Science, 2010. 115(2):674. doi:
  106. 1002/app.30550.
  107. Wu M., Wang Y., Wang M., Ge M.,
  108. Effect of SiO2 Nanoparticles on the Wear
  109. Resistance of Starch Films. Fiber and textiles in
  110. Eastern Europe, 2008. 16(4):96.
  111. Voon H., Bhat R., Easa A., Liong M. T.,
  112. Karim A. A., Effect of Addition of Halloysite
  113. Nanoclay and SiO2 Nanoparticles on Barrier and
  114. Mechanical Properties of Bovine Gelatin Films.
  115. Food Bioprocess Technol, 2012/07/01
  116. ;5(5):1766. doi: 10.1007/s11947-010-0461-y.
  117. Xia X., Hu Z., Marquez M. Physically
  118. bonded nanoparticle networks: a novel drug
  119. delivery system. Journal of Controlled Release,
  120. 103(1):21. doi: DOI:
  121. 1016/j.jconrel.2004.11.016.
  122. Tunç S., Duman O., Preparation and
  123. characterization of biodegradable methyl
  124. cellulose/montmorillonite nanocomposite films.
  125. Applied Clay Science, 2010. 48(3):414. doi:
  126. 1016/j.clay.2010.01.016.
  127. Müller C. M. O., Laurindo J. B.,
  128. Yamashita F., Effect of nanoclay incorporation
  129. method on mechanical and water vapor barrier
  130. properties of starch-based films. Industrial Crops
  131. and Products, 2011. 33(3):605. doi:
  132. 1016/j.indcrop.2010.12.021.