Removal of Heavy Metal Ions from Polluted Waters by Using of Low Cost Adsorbents: Review

Authors

Department of Chemistry, Graduate student, Firuz Abad Branch, Islamic Azad University, Fars, Iran

Abstract

Adsorption is a fundamental process in the physicochemical treatment of wastewaters which industries employ to reduce hazardous organic and inorganic wastes in effluents. In recent years the use of low-cost adsorbents has been widely investigated as a replacement for the currently costly methods of removing heavy metal ions from wastewater. It is well-known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In this study, the use of some of low cost adsorbents for the removal of heavy metals from wastewater has been reviewed.

Keywords


  1. Bennett P.M., Jepson P.D., Law R.J., Jones
  2. B.R., Kuiken T., Baker J.R., Rogan E., Kirkwood
  3. J.K., 2001. Exposure to heavy metals and infectious
  4. disease mortality in harbour porpoises from England
  5. and Wales. Env. Pol. J. 112,33-40.
  6. Fujise Y., Honda K., Tatsukawa R., Mishima, S.,
  7. Tissue distribution of heavy metals in Dallââ‚‌™s
  8. porpoise in the northwestern Pacific. Mar. Pol. Bul.
  9. J. 19, 226-30.
  10. Honda K., Tatsukawa R., Itano K., Miyazaki N. ,
  11. Fujiyama T., 1983. Heavy metal concentrations in
  12. muscle, liver and kidney tissue of Striped dolphin
  13. Stenella coeruleoalba and their variations with body
  14. length, weight, age and sex. Agr and Biolog. Chem.
  15. J. 47, 1219-1228.
  16. Parsons E.C.M., 1999. Trace metal concentrations
  17. in the tissues of cetaceans from Hong Kongââ‚‌™s
  18. territorial waters. Env. Con. 26, 30-40.
  19. Piotrowski J.K., Coleman D.O., 1980.
  20. Environmental hazards of heavy metals: summary
  21. evaluation of lead, cadmium.and mercury . a general
  22. report. UNEP, Nairobi, 23,123-128.
  23. Quaterman J., 1986. Lead. In: Trace metals in
  24. human and animal nutrition. Academic Press,
  25. Florida. 12, 23-28.
  26. Huang C. P., Wu M. H., 1975. Chromium
  27. removal by carbon adsorption of the Water. Pol.
  28. Cont. Fed. J. 47, 2437-2445.
  29. Lokeshwari N., Joshi. K., 2009. Biosorption of
  30. Heavy Metals using Biomass. Envl. Res.J. 3, 29-35.
  31. Singanan M., Vinodhini S., Alemayehu A.,
  32. Phytoremediation of heavy metals from
  33. industrial waste waters by using indigenous
  34. biomaterials. Env. Pro. J. 26(5), 385-391.
  35. Chaiko D.J, Kopasz J.P., Ellison J.G., 1998. Use
  36. of Sol-Gel system for solid/liquid separation, Ind
  37. and Eng Chem Res. 37, 1071-1078.
  38. WellerM.G., 2000. Immunochromatographic
  39. techniques-a critical review, Anal. Chem. J. 366,
  40. -645.
  41. Ghorai S., Pant K.K., 2005. Equilibrium,
  42. kinetics and breakthrough studies for adsorption of
  43. fluoride on activated alumina. Pur. Tech .42, 265-
  44. Martone Pt, Estevez Jm., Lu F., Ruel K.,
  45. Denny Mw., Somerville C., Ralph J., 2009.
  46. Discovery of Lignin in Seaweed Reveals
  47. Convergent Evolution of Cell-Wall Architecture.
  48. Cur. bio .19 (2), 169ââ‚‌“75.
  49. Sjöström E., Wood Chemistry: Fundamentals and
  50. Applications, 1993.
  51. Boerjan W., RalphJ., Baucher M., 2003. Lignin
  52. bios. Ann. Rev. Plant Biol. 54 (1), 519ââ‚‌“549.
  53. Chabannes M., 2001. In situ analysis of lignins
  54. in transgenic tobacco reveals a differential impact of
  55. individual transformations on the spatial patterns of
  56. lignin deposition at the cellular and subcellular
  57. levels. Plant J. 28 (3), 271ââ‚‌“282.
  58. Ralph et al., 2001. Elucidation of new structures
  59. in lignins of CAD- and COMT-deficient plants by
  60. NMR. Phytochem. J. 57 (6), 993ââ‚‌“1003.
  61. Lagtah L. et al., 2005. use of lignin as an
  62. adsorbent and as a precursor of activated carbons
  63. (ACs) in order to remove Cd+2, Cu2+ and Zn2+ ions
  64. from aqueous solutions. Ing. Chem. J. 65, 234-266.
  65. Guo J. et al., 2009. Adsorption of metal ions on
  66. lignin. Plant. J. 32, 234-245.
  67. Carrott P. J. M, Ribeiro Carrott M. M. L., 2007.
  68. Use of low cost biosorbent as lignin for adsorption
  69. and purification waste water. Technol. J. 98, 2301-
  70. Srivastava S. K., Singh A. K., Sharma A., 1994.
  71. High uptake of Pb (II) and Zn (II) by using lignin
  72. extracted from black liquor. Environ. Technol. 15 ,
  73. -360.
  74. Managing Coal Combustion Residues in Mine,
  75. Committee on Mine Placement of Coal Combustion
  76. Wastes, National Research Council of the National
  77. Academies, 2006.
  78. American Coal Ash Association www.acaausa.
  79. org.
  80. Snellings R., Mertens G., Elsen J., 2012.
  81. Supplementary cementitious materials. Mineral and
  82. Geochem. Rev. 74, 211-278.
  83. Scott Allan N., Thomas Michael D. A., 2007.
  84. Evaluation of Fly Ash from Co-Combustion of Coal
  85. and Petroleum Coke for Use in Concrete. ACI.
  86. Materi .J . 1,62ââ‚‌“70.
  87. Duxson P., Provis J.L., Lukey G.C., van
  88. Deventer J.S.J., 2007. The role of inorganic
  89. polymer technology in the development of 'Green
  90. concrete'". Cement and Concrete Research 37 (12):
  91. ââ‚‌“1597.
  92. Panday K.K., Prasad .G. Singh V.N., 1985.
  93. Copper (II) removal from aqueous solutions by fly
  94. ash, Water Res. 19, 869ââ‚‌“873.
  95. Viraraghavan, G., Rao A.K., 1991. Adsorption
  96. of cadmium and chromium from wastewater. Env.
  97. Sci. Health. J. 26 (5) 721ââ‚‌“753.
  98. Kumar K.V, Ramamurthi V., Sivanesan S.,
  99. Modeling the mechanism involved during the
  100. sorption of methylne blue onto fly ash, Colloid
  101. Interface Sci. J. 284: 14ââ‚‌“21.
  102. Weng C.H, Huang C.P., 1994. Treatment of
  103. metal industrial water by fly ash and cement
  104. fixation, Environ. Eng. Div. J. ASCE 120, 1470ââ‚‌“
  105. Weng C.H., Huang C.P., 2004. Adsorption
  106. characteristics of Zn(II) from dilute aqueous solution
  107. by fly ash. Colloids and Surfaces A: Physicochem,
  108. Eng. Aspects 247, 137ââ‚‌“143.
  109. Baya B. T., 2002. Comparative study of
  110. adsorption properties of Turkish fly ashes ââ‚‌“I. The
  111. case of nickel (II), copper (II) and zinc (II), Hazard.
  112. Mater. B J. 95:251ââ‚‌“273.
  113. Heechan Cho., 2001. The possibility of the
  114. utilization of coal fly ash as a low cost
  115. adsorbent.Env J. 5,123-131.
  116. Julia A., 2006. the efficiency of fly ash in the
  117. removal of heavy metals (Cd and Cu).Env. J. 23, 14-
  118. Cadena F., Rizvi R., Peters. R. W., Feasibility
  119. studies for the removal of heavy metals from
  120. solution using tailored bentonite. In Hazardous and
  121. industrial Wastes, Proceedings of the Twenty ââ‚‌“
  122. Second Mid-Atlantic Industrial Waste Conference,
  123. Drexel University, 1990.
  124. Johansson L., 1999. Blast furnace slag as
  125. phosphorus sorbentsââ‚‌”column studies. Sci. Total
  126. Environ.229, 89-97.
  127. Gruenberg B., Kern, J., 2001. Phosphorus
  128. retention capacity of iron-ore and blast furnace slag
  129. in subsurface flow constructed wetlands. WST, 44,
  130. -75.
  131. Kostura B., Kulveitová H., Leško, J., 2005.
  132. Blast furnace slagsas sorbents of phosphate from
  133. water solutions. Water Res., 39, 1795-1802.
  134. Korkusuz E.A., BeklioÄŸlu M., Demirer G.N.,
  135. Use of blast furnace granulated slag as a
  136. substrate in vertical flow reed beds: Field
  137. application. Bioresour. Technol., 98, 2089-2101.
  138. Ouki S.K, Kavannagh M., 1997. Performance of
  139. natural zeolites for the treatment of mixed metalcontaminated
  140. effluents, Waste Manage. Res. 15:
  141. ââ‚‌“394.
  142. Matis K.A, Zouboulis A.I, Lazaridis .N.K.,
  143. Removal and recovery of metals from dilute
  144. solutions, applications of flotation techniques. 12,
  145. -196.
  146. Matis K.A, Zouboulis A.I., Lazaridis .N.K
  147. Blocher C., 2004. Application of flotation for the
  148. separation of metal-loaded zeolites, Chemosphere,
  149. , 65ââ‚‌“72.
  150. Moore J.W, Ramamurthy S., Heavy Metals in
  151. Natural Waters: Applied Monitoring and Impact
  152. Assessment, Springerââ‚‌“Verlag, New York, 1984.
  153. Adriano D.C., Page A.L, Elseewi A.A, Chang
  154. A.C., 1980. Utilization and disposal of fly-ash and
  155. other coal residues in terrestrial ecosystems,
  156. Environ. Qual. J. 9, 333ââ‚‌“344.
  157. Querol X., Moreno N., Umana J.C., Alastuey
  158. A., 2002. Synthesis of zeolites from coal fly ash: an
  159. overview, Int. J. Coal Geol. 50, 413ââ‚‌“423.
  160. Hui K.S., Recycling of coal fly ash: synthetic
  161. zeolite 4A and MCM-41, Master thesis, The Hong
  162. Kong University of Science and Technology, 2004.
  163. Blanchard G., Maunaye M., Martin G., 1984.
  164. Removal of heavy-metals from waters by means of
  165. natural zeolites, Water Res. 18, 1501ââ‚‌“1507.
  166. Malliou E., Loizidou M., Spyrellis N., 1994.
  167. Uptake of lead and cadmium by clinoptilolite, Sci.
  168. Total Environ. 149,139ââ‚‌“144.
  169. Singh B., Alloway B.J., Bochereau F.J.M., 2000.
  170. Cadmium sorption behavior of natural and synthetic
  171. zeolites, Commun. Soil Sci. Plant Anal. 31, 2775ââ‚‌“
  172. Querol X., Moreno N., Umana J.C., Juan R.,
  173. Hernandez S., 2002. Application of zeolitic material
  174. synthesised from fly ash to the decontamination of
  175. waste water and flue gas, J. Chem. Technol.
  176. Biotechnol. 77 292ââ‚‌“298.
  177. Majdan M., Pikus S., Kowalska-Ternes M.,
  178. Equilibrium study of selected divalent delectron
  179. metals adsorption on A-type zeolite,
  180. Colloid Interface Sci. J. 262, 321ââ‚‌“330.
  181. Namasivayam C., Yamuna R.T., 1999. Studies
  182. on chromium (III) removal from aqueous solution
  183. by adsorption onto biogas residual slurry and its
  184. application to tannery wastewater treatment, Water
  185. Air Soil Pollut. 113, 371ââ‚‌“384.
  186. Covarrubias C., Arriagada R., Yanez J., Garcia
  187. R., 2005. Removal of chromium(III) from tannery
  188. effluents, using a system of packed columns of
  189. zeolite and activated carbon, J. Chem. Technol.
  190. Biotechnol. 80, 899ââ‚‌“908.
  191. Subramanian K., Yadaiah P., 2001. Assessment
  192. of the impact of industrial effluents on water quality
  193. in Patancheru and environs, Medak district, Andhra
  194. Pradesh, India, Hydrogeol. J. 9: 297ââ‚‌“312.
  195. Ouki J., Kavannagh K., 2009. the performance
  196. of natural zeolites (clinoptilolite and chabazite) on
  197. the treatment of mixed metal effluents (Pb2+, Cd2+,
  198. Cu2+, Zn2+, Cr3+,Ni2+ and Co2+ ).Env.J. 34,53-62.
  199. ŠĆIBAN M., KLAŠNJA M., 2003.
  200. Optimization of usage of wood sawdust as adsorbent
  201. of heavy metal ions from water.34:45-51.
  202. Bryant P. S., Petersen J. N., Lee J. M., Brouns
  203. T. M., 1992. adsorption of hexavalent chromium by
  204. red fir sawdust. Appl. Biochem. Biotech. j. 34-35:
  205. -788.
  206. Ajmal M., Khan A. H., Ahmad S., Ahmad A.,
  207. removal of chromium by sawdust .Water Res.
  208. , 3085-3091.
  209. Aljundi I. H., Jarrah N., 2008. Study of
  210. characteristics of activated carbon produced from
  211. Jordanian olive cake, Anal.J. 81, 33-36.
  212. Valix M., Cheung W. H., McKay G., 2004.
  213. Preparation of activated carbon using low
  214. temperature carbonisation and physical activation of
  215. high ash raw bagasse for acid dye adsorption.
  216. Chemosphere.56,493-501.
  217. Thonstad J., Fellner P., Haarberg G.M.,
  218. Aluminium Electrolysis, 2001.
  219. Grjotheim K., Kvande H., Introduction to
  220. Aluminium Electrolysis, Understanding the Hall-
  221. Heroult Process, 1993.
  222. Thonstad J., Fellner P., Haarberg G. M., Hiveš
  223. J., Kvande H., Sterten A., Aluminium Electrolysis
  224. Fundamentals of the Hall-Heroult Process, 2001.
  225. Nordberg. G.F., Fowler .B.A, Nordberg, Friberg
  226. M. L., Handbook of Toxicology of Metals,
  227. European Environment Agency, Copenhagen, 2005.
  228. Rangsivek R., Jekel M. R., 2005. Removal of
  229. dissolved metals by zero-valent iron (ZVI): Kinetics,
  230. equilibria, processes and implications for stormwater
  231. runoff treatment, Wat. Res. 39, 4153-4163.
  232. Štrkalj A., Rađenović A., Malina A., 2010.
  233. Nickel Adsorption onto carbon anode dust modified
  234. by Acetic Acid and kOH. Min and Metal.J
  235. .46(1),33-40.
  236. Zhuangdong Y., 2007. Study on the synthesis
  237. and catalyst oxidation properties of chitosan bound
  238. nickel(II) complexes. Chem. Ind T. 21 (5), 22ââ‚‌“24.
  239. Kean T., Roth S., Thanou M., 2005.
  240. Trimethylated chitosans as non-viral gene delivery
  241. vectors: cytotoxicity and transfection efficiency. J
  242. Cont.R. 103 (3), 643ââ‚‌“53.
  243. Varma A.J., Deshpande S.V., Kennedy J.F.,
  244. Metal complexation by chitosan and its
  245. derivatives. Carb. Poly. a rev. 55,77-93
  246. Guibal E., 2004. Interactions of metal ions with
  247. chitosan-based sorbents: A review. Sep and Pur
  248. Tech, 38, 43-74.
  249. Sewvandi G.A., Adikary S.U., 2011. Removal
  250. of heavy metals from wastewater using chitosan:
  251. Materials Scie.38, 30-35.
  252. Dungan R. S., Dees N. H., 2007. The
  253. characterization of total and leachable metals in
  254. foundry molding sands. Env.J. 90, 1ââ‚‌“10.
  255. Jl S., Wan L., Fan Z., 2001. The toxic
  256. compounds and leaching characteristics of spent
  257. foundry sands. Water, Air, and Soil Pollution; 132,
  258. ââ‚‌“364.
  259. Lee T., Park J., Lee J., 2004. Waste green
  260. sands as reactive media for the removal of zinc from
  261. water. Chemosphere; 56, 571ââ‚‌“581.
  262. Glavas Z., Strkalj A., 2009. Waste metallurgical
  263. materials- potential adsorbents for removal Cr+6.
  264. Chemosphere. 56,507-512.
  265. Strkalj A., Jadranka M., Ankica R., 2009. Waste
  266. mould sand-potential low-cost sorbent for nickel
  267. andchromium ions from aqueous solution. Materials
  268. and Geoenvironment; 56(2), 118-125.
  269. Masri M.S., Friedman M., 1974. Effect of
  270. chemical modification of wool on metal ion binding.
  271. J. Appl. Polym. Sci. 18, 2367-2377.
  272. Orhan Y., Buyukgungor H. ,1993. The removal
  273. of heavy metals by using agricultural wastes. Water
  274. Sci. Technol.28(2),247-255.
  275. Alves M. M., Gonzalez Beca C.G., Guedes de
  276. Carvalho R., Castanheira J.M.,1993. Chromium
  277. removal in tannery wastewaters
  278. WaterRes.27(8),1333-1338.
  279. Teles de Vasconcelos L.A., Gonzalez Beca C.G.
  280. ,1993. Adsorption equilibria between pine bark and
  281. several ions in aqueous solution, 2. Cd(II), Cr(III)
  282. and H+. Eur. Water Pollut. Control 3(6),29-39.
  283. Teles de Vasconcelos L.A., Gonzalez Beca C.G.
  284. , 1994. Adsorption equilibria between pine bark and
  285. several ions in aqueous solution, 1. Pb(II). Eur.
  286. Water Pollut. Control 4(1), 41-51.
  287. Kumar U., Bandyopadhyay M., 2006. Sorption
  288. of cadmium from aqueous solution using retreated
  289. rice husk, Biores. Technol. 97, 104ââ‚‌“109.
  290. Iqbal M., Saeed A., Akhtar N., 2002. Petiolar
  291. felt-seath of palm: A new biosorbent for the removal
  292. of heavy metals from contaminated water. Biores.
  293. Technol. 81, 151ââ‚‌“153.
  294. Low K.S., Lee C.K., Liew S.C., 2000. Sorption
  295. of cadmium and lead from aqueous solution by spent
  296. grain. Proc. Biochem. J. 36: 59-64