Removal of Heavy Metal Ions from Polluted Waters by Using of Low Cost Adsorbents: Review


Department of Chemistry, Graduate student, Firuz Abad Branch, Islamic Azad University, Fars, Iran


Adsorption is a fundamental process in the physicochemical treatment of wastewaters which industries employ to reduce hazardous organic and inorganic wastes in effluents. In recent years the use of low-cost adsorbents has been widely investigated as a replacement for the currently costly methods of removing heavy metal ions from wastewater. It is well-known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In this study, the use of some of low cost adsorbents for the removal of heavy metals from wastewater has been reviewed.


Bennett P.M., Jepson P.D., Law R.J., Jones
B.R., Kuiken T., Baker J.R., Rogan E., Kirkwood
J.K., 2001. Exposure to heavy metals and infectious
disease mortality in harbour porpoises from England
and Wales. Env. Pol. J. 112,33-40.
Fujise Y., Honda K., Tatsukawa R., Mishima, S.,
Tissue distribution of heavy metals in Dallââ‚‌™s
porpoise in the northwestern Pacific. Mar. Pol. Bul.
J. 19, 226-30.
Honda K., Tatsukawa R., Itano K., Miyazaki N. ,
Fujiyama T., 1983. Heavy metal concentrations in
muscle, liver and kidney tissue of Striped dolphin
Stenella coeruleoalba and their variations with body
length, weight, age and sex. Agr and Biolog. Chem.
J. 47, 1219-1228.
Parsons E.C.M., 1999. Trace metal concentrations
in the tissues of cetaceans from Hong Kongââ‚‌™s
territorial waters. Env. Con. 26, 30-40.
Piotrowski J.K., Coleman D.O., 1980.
Environmental hazards of heavy metals: summary
evaluation of lead, cadmium.and mercury . a general
report. UNEP, Nairobi, 23,123-128.
Quaterman J., 1986. Lead. In: Trace metals in
human and animal nutrition. Academic Press,
Florida. 12, 23-28.
Huang C. P., Wu M. H., 1975. Chromium
removal by carbon adsorption of the Water. Pol.
Cont. Fed. J. 47, 2437-2445.
Lokeshwari N., Joshi. K., 2009. Biosorption of
Heavy Metals using Biomass. Envl. Res.J. 3, 29-35.
Singanan M., Vinodhini S., Alemayehu A.,
Phytoremediation of heavy metals from
industrial waste waters by using indigenous
biomaterials. Env. Pro. J. 26(5), 385-391.
Chaiko D.J, Kopasz J.P., Ellison J.G., 1998. Use
of Sol-Gel system for solid/liquid separation, Ind
and Eng Chem Res. 37, 1071-1078.
WellerM.G., 2000. Immunochromatographic
techniques-a critical review, Anal. Chem. J. 366,
Ghorai S., Pant K.K., 2005. Equilibrium,
kinetics and breakthrough studies for adsorption of
fluoride on activated alumina. Pur. Tech .42, 265-
Martone Pt, Estevez Jm., Lu F., Ruel K.,
Denny Mw., Somerville C., Ralph J., 2009.
Discovery of Lignin in Seaweed Reveals
Convergent Evolution of Cell-Wall Architecture.
Cur. bio .19 (2), 169ââ‚‌“75.
Sjöström E., Wood Chemistry: Fundamentals and
Applications, 1993.
Boerjan W., RalphJ., Baucher M., 2003. Lignin
bios. Ann. Rev. Plant Biol. 54 (1), 519ââ‚‌“549.
Chabannes M., 2001. In situ analysis of lignins
in transgenic tobacco reveals a differential impact of
individual transformations on the spatial patterns of
lignin deposition at the cellular and subcellular
levels. Plant J. 28 (3), 271ââ‚‌“282.
Ralph et al., 2001. Elucidation of new structures
in lignins of CAD- and COMT-deficient plants by
NMR. Phytochem. J. 57 (6), 993ââ‚‌“1003.
Lagtah L. et al., 2005. use of lignin as an
adsorbent and as a precursor of activated carbons
(ACs) in order to remove Cd+2, Cu2+ and Zn2+ ions
from aqueous solutions. Ing. Chem. J. 65, 234-266.
Guo J. et al., 2009. Adsorption of metal ions on
lignin. Plant. J. 32, 234-245.
Carrott P. J. M, Ribeiro Carrott M. M. L., 2007.
Use of low cost biosorbent as lignin for adsorption
and purification waste water. Technol. J. 98, 2301-
Srivastava S. K., Singh A. K., Sharma A., 1994.
High uptake of Pb (II) and Zn (II) by using lignin
extracted from black liquor. Environ. Technol. 15 ,
Managing Coal Combustion Residues in Mine,
Committee on Mine Placement of Coal Combustion
Wastes, National Research Council of the National
Academies, 2006.
American Coal Ash Association www.acaausa.
Snellings R., Mertens G., Elsen J., 2012.
Supplementary cementitious materials. Mineral and
Geochem. Rev. 74, 211-278.
Scott Allan N., Thomas Michael D. A., 2007.
Evaluation of Fly Ash from Co-Combustion of Coal
and Petroleum Coke for Use in Concrete. ACI.
Materi .J . 1,62ââ‚‌“70.
Duxson P., Provis J.L., Lukey G.C., van
Deventer J.S.J., 2007. The role of inorganic
polymer technology in the development of 'Green
concrete'". Cement and Concrete Research 37 (12):
Panday K.K., Prasad .G. Singh V.N., 1985.
Copper (II) removal from aqueous solutions by fly
ash, Water Res. 19, 869ââ‚‌“873.
Viraraghavan, G., Rao A.K., 1991. Adsorption
of cadmium and chromium from wastewater. Env.
Sci. Health. J. 26 (5) 721ââ‚‌“753.
Kumar K.V, Ramamurthi V., Sivanesan S.,
Modeling the mechanism involved during the
sorption of methylne blue onto fly ash, Colloid
Interface Sci. J. 284: 14ââ‚‌“21.
Weng C.H, Huang C.P., 1994. Treatment of
metal industrial water by fly ash and cement
fixation, Environ. Eng. Div. J. ASCE 120, 1470ââ‚‌“
Weng C.H., Huang C.P., 2004. Adsorption
characteristics of Zn(II) from dilute aqueous solution
by fly ash. Colloids and Surfaces A: Physicochem,
Eng. Aspects 247, 137ââ‚‌“143.
Baya B. T., 2002. Comparative study of
adsorption properties of Turkish fly ashes ââ‚‌“I. The
case of nickel (II), copper (II) and zinc (II), Hazard.
Mater. B J. 95:251ââ‚‌“273.
Heechan Cho., 2001. The possibility of the
utilization of coal fly ash as a low cost
adsorbent.Env J. 5,123-131.
Julia A., 2006. the efficiency of fly ash in the
removal of heavy metals (Cd and Cu).Env. J. 23, 14-
Cadena F., Rizvi R., Peters. R. W., Feasibility
studies for the removal of heavy metals from
solution using tailored bentonite. In Hazardous and
industrial Wastes, Proceedings of the Twenty ââ‚‌“
Second Mid-Atlantic Industrial Waste Conference,
Drexel University, 1990.
Johansson L., 1999. Blast furnace slag as
phosphorus sorbentsââ‚‌”column studies. Sci. Total
Environ.229, 89-97.
Gruenberg B., Kern, J., 2001. Phosphorus
retention capacity of iron-ore and blast furnace slag
in subsurface flow constructed wetlands. WST, 44,
Kostura B., Kulveitová H., Leško, J., 2005.
Blast furnace slagsas sorbents of phosphate from
water solutions. Water Res., 39, 1795-1802.
Korkusuz E.A., BeklioÄŸlu M., Demirer G.N.,
Use of blast furnace granulated slag as a
substrate in vertical flow reed beds: Field
application. Bioresour. Technol., 98, 2089-2101.
Ouki S.K, Kavannagh M., 1997. Performance of
natural zeolites for the treatment of mixed metalcontaminated
effluents, Waste Manage. Res. 15:
Matis K.A, Zouboulis A.I, Lazaridis .N.K.,
Removal and recovery of metals from dilute
solutions, applications of flotation techniques. 12,
Matis K.A, Zouboulis A.I., Lazaridis .N.K
Blocher C., 2004. Application of flotation for the
separation of metal-loaded zeolites, Chemosphere,
, 65ââ‚‌“72.
Moore J.W, Ramamurthy S., Heavy Metals in
Natural Waters: Applied Monitoring and Impact
Assessment, Springerââ‚‌“Verlag, New York, 1984.
Adriano D.C., Page A.L, Elseewi A.A, Chang
A.C., 1980. Utilization and disposal of fly-ash and
other coal residues in terrestrial ecosystems,
Environ. Qual. J. 9, 333ââ‚‌“344.
Querol X., Moreno N., Umana J.C., Alastuey
A., 2002. Synthesis of zeolites from coal fly ash: an
overview, Int. J. Coal Geol. 50, 413ââ‚‌“423.
Hui K.S., Recycling of coal fly ash: synthetic
zeolite 4A and MCM-41, Master thesis, The Hong
Kong University of Science and Technology, 2004.
Blanchard G., Maunaye M., Martin G., 1984.
Removal of heavy-metals from waters by means of
natural zeolites, Water Res. 18, 1501ââ‚‌“1507.
Malliou E., Loizidou M., Spyrellis N., 1994.
Uptake of lead and cadmium by clinoptilolite, Sci.
Total Environ. 149,139ââ‚‌“144.
Singh B., Alloway B.J., Bochereau F.J.M., 2000.
Cadmium sorption behavior of natural and synthetic
zeolites, Commun. Soil Sci. Plant Anal. 31, 2775ââ‚‌“
Querol X., Moreno N., Umana J.C., Juan R.,
Hernandez S., 2002. Application of zeolitic material
synthesised from fly ash to the decontamination of
waste water and flue gas, J. Chem. Technol.
Biotechnol. 77 292ââ‚‌“298.
Majdan M., Pikus S., Kowalska-Ternes M.,
Equilibrium study of selected divalent delectron
metals adsorption on A-type zeolite,
Colloid Interface Sci. J. 262, 321ââ‚‌“330.
Namasivayam C., Yamuna R.T., 1999. Studies
on chromium (III) removal from aqueous solution
by adsorption onto biogas residual slurry and its
application to tannery wastewater treatment, Water
Air Soil Pollut. 113, 371ââ‚‌“384.
Covarrubias C., Arriagada R., Yanez J., Garcia
R., 2005. Removal of chromium(III) from tannery
effluents, using a system of packed columns of
zeolite and activated carbon, J. Chem. Technol.
Biotechnol. 80, 899ââ‚‌“908.
Subramanian K., Yadaiah P., 2001. Assessment
of the impact of industrial effluents on water quality
in Patancheru and environs, Medak district, Andhra
Pradesh, India, Hydrogeol. J. 9: 297ââ‚‌“312.
Ouki J., Kavannagh K., 2009. the performance
of natural zeolites (clinoptilolite and chabazite) on
the treatment of mixed metal effluents (Pb2+, Cd2+,
Cu2+, Zn2+, Cr3+,Ni2+ and Co2+ ).Env.J. 34,53-62.
Optimization of usage of wood sawdust as adsorbent
of heavy metal ions from water.34:45-51.
Bryant P. S., Petersen J. N., Lee J. M., Brouns
T. M., 1992. adsorption of hexavalent chromium by
red fir sawdust. Appl. Biochem. Biotech. j. 34-35:
Ajmal M., Khan A. H., Ahmad S., Ahmad A.,
removal of chromium by sawdust .Water Res.
, 3085-3091.
Aljundi I. H., Jarrah N., 2008. Study of
characteristics of activated carbon produced from
Jordanian olive cake, Anal.J. 81, 33-36.
Valix M., Cheung W. H., McKay G., 2004.
Preparation of activated carbon using low
temperature carbonisation and physical activation of
high ash raw bagasse for acid dye adsorption.
Thonstad J., Fellner P., Haarberg G.M.,
Aluminium Electrolysis, 2001.
Grjotheim K., Kvande H., Introduction to
Aluminium Electrolysis, Understanding the Hall-
Heroult Process, 1993.
Thonstad J., Fellner P., Haarberg G. M., Hiveš
J., Kvande H., Sterten A., Aluminium Electrolysis
Fundamentals of the Hall-Heroult Process, 2001.
Nordberg. G.F., Fowler .B.A, Nordberg, Friberg
M. L., Handbook of Toxicology of Metals,
European Environment Agency, Copenhagen, 2005.
Rangsivek R., Jekel M. R., 2005. Removal of
dissolved metals by zero-valent iron (ZVI): Kinetics,
equilibria, processes and implications for stormwater
runoff treatment, Wat. Res. 39, 4153-4163.
Štrkalj A., Rađenović A., Malina A., 2010.
Nickel Adsorption onto carbon anode dust modified
by Acetic Acid and kOH. Min and Metal.J
Zhuangdong Y., 2007. Study on the synthesis
and catalyst oxidation properties of chitosan bound
nickel(II) complexes. Chem. Ind T. 21 (5), 22ââ‚‌“24.
Kean T., Roth S., Thanou M., 2005.
Trimethylated chitosans as non-viral gene delivery
vectors: cytotoxicity and transfection efficiency. J
Cont.R. 103 (3), 643ââ‚‌“53.
Varma A.J., Deshpande S.V., Kennedy J.F.,
Metal complexation by chitosan and its
derivatives. Carb. Poly. a rev. 55,77-93
Guibal E., 2004. Interactions of metal ions with
chitosan-based sorbents: A review. Sep and Pur
Tech, 38, 43-74.
Sewvandi G.A., Adikary S.U., 2011. Removal
of heavy metals from wastewater using chitosan:
Materials Scie.38, 30-35.
Dungan R. S., Dees N. H., 2007. The
characterization of total and leachable metals in
foundry molding sands. Env.J. 90, 1ââ‚‌“10.
Jl S., Wan L., Fan Z., 2001. The toxic
compounds and leaching characteristics of spent
foundry sands. Water, Air, and Soil Pollution; 132,
Lee T., Park J., Lee J., 2004. Waste green
sands as reactive media for the removal of zinc from
water. Chemosphere; 56, 571ââ‚‌“581.
Glavas Z., Strkalj A., 2009. Waste metallurgical
materials- potential adsorbents for removal Cr+6.
Chemosphere. 56,507-512.
Strkalj A., Jadranka M., Ankica R., 2009. Waste
mould sand-potential low-cost sorbent for nickel
andchromium ions from aqueous solution. Materials
and Geoenvironment; 56(2), 118-125.
Masri M.S., Friedman M., 1974. Effect of
chemical modification of wool on metal ion binding.
J. Appl. Polym. Sci. 18, 2367-2377.
Orhan Y., Buyukgungor H. ,1993. The removal
of heavy metals by using agricultural wastes. Water
Sci. Technol.28(2),247-255.
Alves M. M., Gonzalez Beca C.G., Guedes de
Carvalho R., Castanheira J.M.,1993. Chromium
removal in tannery wastewaters
Teles de Vasconcelos L.A., Gonzalez Beca C.G.
,1993. Adsorption equilibria between pine bark and
several ions in aqueous solution, 2. Cd(II), Cr(III)
and H+. Eur. Water Pollut. Control 3(6),29-39.
Teles de Vasconcelos L.A., Gonzalez Beca C.G.
, 1994. Adsorption equilibria between pine bark and
several ions in aqueous solution, 1. Pb(II). Eur.
Water Pollut. Control 4(1), 41-51.
Kumar U., Bandyopadhyay M., 2006. Sorption
of cadmium from aqueous solution using retreated
rice husk, Biores. Technol. 97, 104ââ‚‌“109.
Iqbal M., Saeed A., Akhtar N., 2002. Petiolar
felt-seath of palm: A new biosorbent for the removal
of heavy metals from contaminated water. Biores.
Technol. 81, 151ââ‚‌“153.
Low K.S., Lee C.K., Liew S.C., 2000. Sorption
of cadmium and lead from aqueous solution by spent
grain. Proc. Biochem. J. 36: 59-64