Accumulation and Histopathological Effects of Mercury Chloride after Acute Exposure in Tropical Fish Gymnotus carapo

Authors

Abstract

The present study evaluated potential Hg bioaccumulation and its morphological effects in different organs of the tropical fish, Gymnotus carapo, after a single acute intra-peritoneal exposure (0.6 µg.g-1) and over progressively longer exposure times (24 h, 48 h, 72 h and 96 h). The Hg accumulation was differential and time dependent for most target organs (testis > liver > gills > muscle).  Hg exposure leads the highest accumulation potential in testis since the initial examination point (24 h) until the last (96 h). The liver showed progressive Hg accumulation, presenting its highest levels only at the 96 h exposure point. Hg concentrations in the gills and muscle oscillated over the exposure times; however, the highest values of both organs also occurred in 96 h exposed fish. Histopathological alterations were observed in testis, liver and gills from 24 h of Hg exposure, and the extent of the alterations and their severity increased out to 96 h of exposure. These results shows a correlation between Hg accumulation and the induced morphological damages in different organs along the time in a tropical fish species G. carapo, being the histopathology a sensitive technique for the observation of the initial damage from Hg exposure.

Keywords


  1. Kehrig, H. A., Costa, M., Moreira, I., Malm, O., 2002. Total and methylmercury in a Brazilian estuary, Rio de Janeiro. Mar. Pollut. Bull., 44, 1018-1023.
  2. Liao, C. Y., Fu, J. J., Shi, J. B., Zhou, Q. F., Yuan, C. G., Jiang, G. B., 2006. Methylmercury accumulation, histopathology effects, and cholinesterase activity alterations in medaka (Oryzias latipes) following sublethal exposure to methylmercury chloride. Environ. Toxicol. Pharmacol., 22, 225-233.
  3. Dang, F., Wang, W. X., 2012. Why mercury concentration increases with fish size? Biokinetic explanation. Environ. Pollut., 163, 192-198.
  4. Ceccatelli, S., Daréb, E., Moorsa, M., 2010. Methylmercury-induced neurotoxicity and apoptosis. Chem. Biol. Interact., 188, 301-308.
  5. Malm, O., Branches, F. J. P., Akagi, H., Castro, M. B., Pfeiffer, W. C., Harada, M., Bastos, W. R., Kato, H., 1995. Mercury and methylmercury in fish and human hair from the Tapajós river basin, Brazil. Sci. Total Environ., 175, 141-150.
  6. Mela, M., Randi, M. A. F., Ventura, D. F., Carvalho, C. E. V., Pelletier, E., Oliveira Ribeiro, C. A., 2007. Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol. Environ. Saf., 68, 426-435.
  7. Oliveira Ribeiro, C. A., Belger, L., Pelletier, E., Rouleau, C., 2002. Histopathological evidence of inorganic mercury and methyl-mercury toxicity in the arctic charr (Salvelinus alpinus). Environ. Res., 90, 217-225.
  8. Albert, J. S., Crampton, W. G. R., Thorsen, D. H., Lovejoy, N. R., 2004. Phylogenetic systematics and historical biogeography of the Neotropical electric fish Gymnotus (Teleostei: Gymnotidae). Syst. Biodivers., 2, 375-417.
  9. Fent, K., 2004. Ecotoxicological effects at contaminated sites. Toxicology, 205, 223-240.
  10. Oliveira Ribeiro, C. A., Guimarães, D. R. J., Pfeiffer, C. W., 1996. Acumulation and distribution of inorganic mercury in a tropical fish (Trichomycterus zonatus). Ecotoxicol. Environ. Saf., 34, 190-195.
  11. Schultz R. I., Peters L. E., Newman C. M., 1996. Toxicokinetics and disposition of inorganic mercury and cadmium in channel catfish after intravascular administration. Toxicol. Appl. Pharmacol., 140, 39-50.
  12. Ferreira, A. G., Melo, E. J. T., Carvalho, C. E. V., 2003. Histological aspects of mercury contamination in muscular and hepatic tissues of Hoplias malabaricus (Pisces, Erytrinidae) from lakes in the north of Rio de Janeiro State, Brazil. Acta Microsc., 12, 49-54.
  13. Sousa, W. P., Carvalho, C. E. V., Carvalho, C. C. V., Suzuki, M. S., 2004. Mercury and organic carbon distribution in six lakes from the north of Rio de Janeiro state. Braz. Arch. Biol. Technol., 47, 139-145.
  14. Bastos, W. R., Malm, O., Pfeiffer, W. C., Cleary, D., 1998. Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Cien. Cult., 50 (4), 255-260.
  15. Skoog, D. A., Leary, J. J., 1992. Principles of Instrumental Analysis. Fourth edition, Philadelphia, Saunders College Publishing, 700p.
  16. Beckett, W.S., Nordberg, G.F., Clarkson, T.W., 2007. Routes of exposure, dose, and metabolism of metals. Pp. 50. In: Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L.T. (Eds.), Handbook on the Toxicology of Metals. Elsevier Publishing.
  17. Vergilio, C.S., Moreira, R.V., Carvalho, C.E.V. and Melo, E.J.T., 2012. Characterization of mature testis and sperm morphology of Gymnotus carapo (Gymnotidae, Teleostei) from the southeast of Brazil. Acta Zoologica (Stockholm). In press.
  18. Crump, K. L., Trudeau, V. L., 2009. Mercury-induced reproductive impairment in fish. Environ. Toxicol. Chem., 28, 895-907.
  19. Friedmann AS, Watzin MC, Johnsen TB, Leiter JC., 1996. Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquat. Toxicol., 35, 265-278.
  20. Hinton, D. E., Laurén, D. J., 1990. Integrative histopathological effects of environmental stressors on fishes. Am. Fish. Soc. Symp., 8, 51-66.
  21. Boening, D. W., 2000. Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40, 1335-1351.
  22. Mieiro, C. L., Duarte, A. C., Pereira, M. E., Pacheco, M., 2011. Mercury accumulation patterns and biochemical endpoints in wildfish (Liza aurata): A multi-organ approach. Ecotoxicology and Environmental Safety. Ecotoxicol. Environ. Saf., 74, 2225-2232.
  23. Teh, S. J., Adams, S. M., Hinton, D. E., 1997. Histopathologic biomarkers in feral freshwater fish populations exposed different types of contaminant stress. Aquat. Toxicol., 37, 51-70.
  24. Schwaiger, J., Wanke, R., Adam, S., Pawert, M., Honnen, W., Triebskorn, R., 1997. The use of histopathological indicators to evaluate contaminant-related stress in fish. J. Aquat. Ecosyst. Stress Recovery 6, 75-86.
  25. Paris-Palacios, S., Biagianti-Risbourg, S., Vernet, G., 2000. Biochemical and (ultra)structural hepatic pertubations of Brachydanio rerio (teleostei, Cyprinidae) exposed to two sublethal concentrations of cooper sulfate. Aquat. Toxicol., 50, 109-124.
  26. Ortiz, J. B., Gonzalez de Canales, M. L., Sarasquete, C., 1999. Quantification and histopathological alterations produced by sublethal copper concentrations in Fundulus heteroclitus. Cienc. Mar., 25, 119-143.
  27. Dyk, J. C., Pieterse, G. M., Vuren, J. H. J., 2007. Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. . Ecotoxicol. Environ. Saf., 66, 432-440.
  28. Giari, L., Manera, M., Simoni, E., Dezfuli, B. S., 2007. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosphere, 67, 1171-1181.
  29. Benett, D., Schmidt, H., Meier, W., Holm, P. B., Wahli, T., 1999. Histopathology in fish: Proposal for a protocol to assess aquatic pollution. J. Fish Dis., 22, 25-34.
  30. Foster, E. P., Drake, D. L., Didomenico, G., 2000. Seasonal changes and tissue distribution of mercury in largemouth bass (Micropterus salmoides) from Dorena Reservour. Arch. Environ. Contam. Toxicol., 38, 78-82.
  31. Régine, M. B., Gilles, D., Yannick, D., Alain, B., 2006. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Sci. Total Environ., 368, 262-270.