Kinetics and Isotherm of Sunset Yellow Dye Adsorption on Cadmium Sulfide Nanoparticle Loaded on Activated Carbon


1 Department of chemistry Science, Firuz Abad Branch, Islamic Azad University, Firuz Abad, Iran

2 Department of law, Central Branch, Islamic Azad University, Tehran, Iran


The objective of this study was to assess the potential of cadmium sulfide nanoparticles loaded onto activated carbon (CdSN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdSN-AC dose. In order to investigate the efficiency of SY adsorption on CdSN-AC, pseudo-first-order, pseudo-second-order kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. It was found that the sorption of SY onto CdSN-AC is followed by these results. 


  1. Ibero M., J. L. Eseverri, C. Barroso and J. Botey,
  2. "Dyes, preservatives and salicylates in the
  3. induction of foodintolerance and hypersensitivity
  4. in children". AllergolImmunopathol (Madr) 10 (4):
  5. ââ‚‌“8.
  6. Amin N. K., 2009. Removal of direct blue-106 dye
  7. fromaqueous solution using new activated carbons
  8. developed from pomegranate peel: Adsorption
  9. equilibrium and kinetics. J. Hazard Mater. 165, 52ââ‚‌“
  10. Engel E., H. Ulrich, R. Vasold. B. König , M.
  11. Landthaler, R. Süttinger and W. Bäumler, 2008.
  12. "Azo Pigments and a Basal Cell Carcinoma at the
  13. Thumb". Dermatology 216 (1): 76ââ‚‌“80.
  14. Golka K., 2004. "Carcinogenicity of azo colorants:
  15. influenceof solubility and bioavailability".
  16. Toxicology Letters151 (1): 203ââ‚‌“10.
  17. Schultz-Ehrenburg U. and O. Gilde, 1987.
  18. "[Results of studies in chronic urticaria with special
  19. reference to nutritional factors]" (in German). Z.
  20. Hautkr..62 : 88ââ‚‌“95.
  21. Arami M., N. Y. Limaee, N. M. Mahmoodi and N.
  22. S. Tabrizi, 2005. Removal of dyes from colored
  23. textile wastewater by orange peel adsorbent:
  24. equilibrium and kinetic studies. J. Colloid.
  25. Interface. Sci. 288, 371ââ‚‌“376.
  26. Ardejani F. D., K. H. Badii, N. Y. Limaee, N. M.
  27. Mahmoodi, M. Arami, S. Z. Shafaei and A. R.
  28. Mirhabibi, 2007. Numerical modeling and
  29. laboratory studies on the removal of Direct Red 23
  30. and Direct Red 80 dyes from textile effluents using
  31. orange peel, a low-cost adsorbent. Dye Pigment.
  32. ,178ââ‚‌“185.
  33. Basar C. A., 2006. Applicability of the various
  34. adsorption models of three dyes adsorption onto
  35. activated carbon prepared waste apricot. J. Hazard.
  36. Mater. 135, 232ââ‚‌“241.
  37. Blackburn R. S., 2004. Natural polysaccharides and
  38. their interactions with dye molecules: applications
  39. in effluent treatment. Environ. Sci. Technol. 38,
  40. ââ‚‌“4909
  41. Cheung W. H., Y. S. Szeto and G. McKay, 2009.
  42. Enhancing the adsorption capacities of acid dyes by
  43. chitosan nano particles. Bioresour. Technol. 100,
  44. ââ‚‌“1148.
  45. Elahmadi M. F., N. Bensalah and A. Gadri, 2009.
  46. Treatment of aqueous wastes contaminated with
  47. Congo red dyes by electrochemical oxidation and
  48. ozonation processes. J. Hazard. Mater. 168,1163-
  49. Gupta V. K., R. Jain and S. Varshney, 2007a.
  50. Electrochemical removal of hazardous dye
  51. Reactofix Red 3 BFN from industrial effluents. J.
  52. Colloid Interface Sci. 312, 292ââ‚‌“296.
  53. Ho Y. S. and G. McKay, 1998. Kinetic models for
  54. the sorption of dye from aqueous solution by wood.
  55. J. Environ. Sci. Health Part B: Process Saf.
  56. Environ. Prot. 76, 183ââ‚‌“191.
  57. Kiefer E, L. Sigg and P. Schosseler, 1997.
  58. Chemical and spectroscopic characterization of
  59. algae surfaces. Environ. Sci. Technol. 31,759-764.
  60. Langmuir I., 1916. The constitution and
  61. fundamental properties of solids and liquids. J. Am.
  62. Chem. Soc. 38, 2221ââ‚‌“2295.
  63. Mondal S., 2008. Methods of dye removal from
  64. dye house effluent-an overview. Environ. Engg.
  65. Sci. 25, 383ââ‚‌“396.
  66. Nandi B. K., A. Goswami and M. K. Purkait, 2009.
  67. Adsorption characteristics of brilliant green dye on
  68. kaolin. J. Hazard. Mater. 161, 387-395.
  69. Slejko F. L., 1985. Adsorption Technology: A Step
  70. by step approach to process evaluation application.
  71. Marcel Dekker, NY.
  72. Sun Q. and L. Yang, 2003. The adsorption of basic
  73. dyes from aqueous solution on modeled peat-resin
  74. particle. Water Res. 37, 1535-1544.
  75. Uluozlu O. D., A. Sari and M. Tuzen, 2010.
  76. Biosorption of antimony from aqueous solution by
  77. lichen (Physciatribacia) biomass. Chem. Engg. J.
  78. , 382-388.