Separation of Mercury Resistant Bacteria from Wastewater of Milk, Detergent and Ceramic Industry


1 Department of Microbiology, Damghan Branch, Islamic Azad University, P.O. Box 36716- 39998, Damghan, Iran

2 Department of Chemistry, Damghan Branch, Islamic Azad University, P.O. Box 36716-39998, Damghan, Iran


Use of microorganisms for removing mercury is an effective technology for the treatment of industrial wastewaters and can become an effective tool for the remediation of man-impacted coastal ecosystems with this metal. In this study, seven types of mercury resistant bacteria were separated from industrial waste and minimum inhibitory concentration (MIC), were determined for these bacteria. Results showed that two strains of bacteria, which isolated from waste water detergent plants, are more resistant to mercury and able to grow at the presence of 52 ppm of mercuric chloride. These bacteria could be used for biological treatment of mercury in contaminated wastewater.


  1. Adebowale A., 2004. Bioremediation of Arsenic,
  2. Chromium,Lead, and Mercury, National
  3. Network of Environmental Management
  4. Studies Fellowfor U.S. Environmental
  5. Protection Agency.
  6. Arif Tasleem J., M. Imtiyaz, A. Arif and H.
  7. Rizwanul, 2009. Mercury pollution: an
  8. emerging problem and potential Bacterial
  9. remediation strategies., World J Microbiol
  10. Biotechnol 25:1529ââ‚‌“1537
  11. Clarkson T. W., L. Magos and G. J. Myers,
  12. Toxicology of mercury;current
  13. exposure and clinical manifestations. N Engl
  14. J Med 349:1731ââ‚‌“1737
  15. Devars S., J. S. Rodríguez-Zavala and R.
  16. Moreno-Sánchez, 2010. Enhanced Tolerance
  17. to Mercury in a Streptomycin-Resistant Strain
  18. of Euglena gracilis, Water, Air, & Soil
  19. Pollution
  20. Essa A. M. , L. E. Macaskie and N. L.
  21. Brown, 2005. A new method for mercury
  22. removal, Biotechnology Letters (2005)
  23. : 1649ââ‚‌“1655
  24. Jaysankar De , N. Ramaiah, A. Mesquita and
  25. X. N. Verlekar. (2003), Tolerance to
  26. Various Toxicants by Marine Bacteria
  27. Highly Resistant to Mercury., Marine
  28. Biotechnology
  29. Mortazavi S., A. Rezaee, A. Khavanin, S.
  30. Varmazyar and M. Iafarzadeh ,2005.
  31. Removal of Mercuric Chloride by a
  32. Mercury Resistant Pseudomonas putida
  33. Strain. Journal ofBiological Sciences 5
  34. (3): 269-273
  35. Moshafi M.H., Mansori S., Nemati R.,
  36. Forootanfar H.(2009), Simultaneous
  37. Resistance to heavy Metals and
  38. Antibiotics in Escherichia coli Strains
  39. Isolated from Clinical Samples.
  40. Rafsanjan Med. Sci. Univer. J. , (8),
  41. -202
  42. Okino S., K. Iwasaki, O. Yagi and H.
  43. Tanaka, 2000. Development of a
  44. biological mercury removal-recovery
  45. system., Biotechnology Letters 22: 783ââ‚‌“
  46. Poulain A. J., S. M. N. Chadhain, A. P.
  47. Ariya, M. Amyot, E. Garcia, P. G. C.
  48. Campbell, G. J. Zylstra and T. Barkay,
  49. Potential for mercury reduction by
  50. microbes in high Arctic. Appl Environ
  51. Microbiol 73(7):2230ââ‚‌“2238
  52. Rasmussen LD, Zawadsky C, Binnerup SJ,
  53. Oregaard G, Sorensen SJ,Kroer N (2008)
  54. Cultivation of hard to culture subsurface
  55. mercury resistant bacteria and discovery
  56. of new merA gene sequences. Appl
  57. Environ Microbiol 74(12):3795ââ‚‌“3803
  58. Ruiz NO, Daniell H (2009) Genetic
  59. engineering to enhance mercury
  60. phytoremediation. Curr Opin Biotechnol
  61. :1ââ‚‌“7
  62. Schue M, Dover LG, Besra GS, Parkhill J,
  63. Brown NL (2009) Sequence and analysis
  64. of a plasmid encoded mercury resistance
  65. operon from Mycobacterium marinum
  66. identifies MerH, a new mercuric ion
  67. transporter. J Bacteriol 191(1):439ââ‚‌“444.
  68. Doi
  69. Summers A. O., 2009. Damage control:
  70. regulating defenses against toxic metals
  71. and metalloids. Curr Opin Microbiol
  72. :1ââ‚‌“7
  • Receive Date: 28 September 2011
  • Revise Date: 23 May 2022
  • Accept Date: 29 October 2018
  • First Publish Date: 29 October 2018